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The reliability analysis and reliability-based optimization of laminated circular
cylinders under axial buckling instability are studied. Structural reliability is measured in
terms of Hasofer-Lind reliability index. The response surface models are used in both the
calculation of the reliability index and the reliability-based optimization. In the reliability
anaysis, both deterministic and probabilistic sensitivity factors are investigated; the
results show that the reliability index is most sensitive to the applied load and Y oung's
modulus of the material. Two cases are considered in the optimization study. In the first
case, the cylinder weight is minimized subject to a reliability constraint whereas in the
second case, cylinder reliability is maximized subject to a weight constraint. In addition,
two different optimization techniques are studied. In the first technique, a global
response surface model of the buckling response based on 3000 Monte Carlo simulations

is used for the design optimization whereas in the second technique, multiple local



regression models, with each based on approximately 20 simulations, are used in
sequential search of an optimum design. An optimum design is found. The results based
on sequential application of multiple local regresson models are close to those from
global optimization while the former is much more efficient in terms of computational

COst.
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CHAPTERI

INTRODUCTION

Reliability Engineering

The study of reliability engineering is developing very rapidly worldwide. All
areas from the electronics industry to the war industry, space aviation, and manufacture
of mechanical and electrical products have attached great importance to it and carried out
massive studiesin this discipline.

Traditionally, structural design relies on deterministic analysis.  Suitable
dimensions, material properties, and loads are assumed, and an analysisis then performed
to provide a more or less detailed description of the structure. However, fluctuations of
the loads, variability of the material properties, and uncertainties regarding the analytical
models al contribute to a generally small probability that the structure does not perform
as intended. In response to the problem, methods have been developed to deal with the
random nature of loads and material properties, and more recently, a general framework
for comparing and combining these statistical effects has emerged. The methods have
been used in application to structural design and reassessment of the safety of existing
structures.

The question of reliability isimportant because of the ever-increasing demands on

the increasing complexity of structures. These increased complexities may provide more



chances for the whole system to become faulty because of the failure of any related part,
and the failure or fault in the whole system could threaten production, cause economic
losses, and even jeopardize personal safety. In addition, the application of new materials
or the adoption of new techniques may result in structures that are neither reliable nor
safe.  Furthermore, the high-performance demands and operation conditions of
equipments can lead to mistakes in control and management. An optimal solution to
these problems can not be found by deterministic means alone. The comprehensive
engineering technology of reliability engineering has been developed to tackle these
guestions.

For a understanding of the concept of reliability, a strength-stress model of a
component of a structure can serve as an example. To predict reliability of this
component for which a failure occurs when the stress exceeds the strength, the nature of
the stress and strength random variables must be known. Stress is used to indicate any
component or equipment that tends to induce failure, while strength indicates any
component or equipment that resists failure. Let the density function for the stress(es) be

denoted by f_ and that for strength (r) by f, asshown in Figure 1.1. The reliability is

defined as the probability that the stress will not exceed the strength. The reliability is
R=P(r >s) =P(r —s >0) (1.2)
where P is the probability. The shaded region in Figure 1.1 is the interference region,
which indicates a finite probability of failure. The magnitude of the failure probability is
afunction of the degree of overlap of the two distributions. The greater the shaded area,

the greater the probability of failure.
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Figure 1.1 Stress, f (s) and strength, f,(r) distributionswith interference region

Reliability-Based Optimization

In the structural analysis of engineering design, there exists uncertainties in
loading, material properties, geometry, and environmental conditions. These
uncertainties should be taken into consideration carefully in order to ensure that the
design performs its function within the desired confidence limit without failure. In robust
design, it is important not only to achieve design objectives but also to maintain the
robustness of design feasibility under the effects of variations caused by uncertainties.

In reliability-based plastic/elastic optima design of mechanica structures, the
problem is to find an optimal design point that is robust with respect to random variations
of the structural parameters. Considering the (expected) construction costs, weight,
volume, etc., denoted as C=C(X), and the probability of failure of the structure, this goal

can be achieved by solving an optimization problem of the following type:



Problem Type A
minC(X)
s.t.
p; (X)<1-R (R=givenreliability)
X 0D,
Problem Type B
min p; (X)
s.t.
C(X)<C,..
X 0D,

where D, isagiven design space.

In solving problems of Type A or B or a certain combination of Type A and B,
the main difficulty is the computation of the probability function and its derivatives.

Moreover, the expected cost functions C(X) and its derivatives must be computed.

Scope of the Present Study

The first part of this study is focused on the reliability analysis of laminated
circular cylinders under axial buckling instability. Structural reliability is measured in
terms of the Hasofer-Lind reliability index, which is based on a nonlinear response
surface model of the buckling load. The effects of variations in material properties,

geometric parameters, and applied load on reliability index are investigated using both



deterministic and probabilistic sensitivity factors. To assess the effect of anisotropy on
buckling reliability, four discrete ply patterns are considered.

The second part of this study examines the reliability-based optimization of
laminated circular cylinders under axial compression. Two cases are considered. In the
first case, the cylinder weight is minimized subject to a minimum reliability constraint
whereas in the second case the cylinder reliability is maximized subject to a maximum
weight constraint. Results of weight minimization based on two different optimization
techniques are compared. In the first technique, the buckling response of the cylinder
over the entire design space is modeled by a single global nonlinear algebraic model
derived from a large-scale Monte Carlo simulation. In the second technique, a point
integration scheme is used to obtain multiple local linear response surface equations,
using a much smaller data set, that are accurate over a small region of the design space.
The results are found to be close, while the multiple local regression model technique is

much more efficient than the global response surface technique.

Literature Review

Reliability Analysis
The area of structural reliability has grown at a tremendous rate in the past
decades. Many methods have been proposed to investigate reliability, considering the
type of problem, the parameters involved, and the uncertainty associated with these
parameters. Uncertainties are typically modeled in terms of the mean (the central
tendency), the variance (the dispersion about the mean), and the distribution. Various

reliability estimation techniques use part or al of this information in different ways.



These variations give a particular method its own specific advantages and limitations.
Two broad families of analysis methods for conducting the investigation have dominated
the reliability and uncertainty analysis literature: analytical techniques and random

sampling methods.

Analytical Techniques

This family consists of such techniques proposed by Hasofer and Lind (1974),
Hohenbichler and Rackwitz (1987) among many others. All of these methods can be
grouped into two types, namely, first- and second-order reliability methods (FORM and
SORM). For FORM, the random variables are characterized by their first and second
moments. Truncation of the Taylor's series expansion of the function forms the basis of
this method. Higher moments, which might describe the skewness and kurtosis of the
distribution, are ignored. For SORM, a higher order approximation for the failure
probability computation is used because of the high nonlinearity of some limit state
functions.

Shao and Murotsu® developed an approximate limit-state function by using a
neural network. An "active learning algorithm” is proposed to enable the network to
determine important failure regions by itself and also to do further learning at those
regions to achieve a good fitness with the real structural state there.

Gucher and Bourgund® used an adaptive interpolation scheme to represent the
system behavior by a response surface model. Subsequently, the response surface is
utilized in conjunction with advanced Monte Carlo simulation techniques (importance

sampling) to obtain the desired reliability estimates. Liu and Moses® used a sequential



response surface method together with Monte Carlo Importance Sampling to calculate the
reliability. Based on their method, they developed areliability analysis program RSM for
aircraft structural systems.

Millwater and Wu* proposed a global/local method to reduce the computational
requirements of probabilistic structural analysis. A coarser global model is used for most
of the computations with a more refined local model used only at key probabilistic
conditions. The global model is used to establish the cumulative distribution function
(CDF) and the Most Probable Point (MPP). The local model then used the predicted MPP

to adjust the CDF value.

Random Sampling Methods

This family of methods have been dominated by traditional Monte Carlo methods
as well as numerous variations such as dstratified sampling (e.g. Latin Hypercube
Sampling), importance sampling and adaptive importance sampling.

Monte Carlo methods have along history in reliability and uncertainty analysis as
function integrators. The basic concept of Monte Carlo integration is to replace a
continuous average by a discrete approximation for that average. However, Monte Carlo
simulation or Latin Hypercube Sampling often require prohibitively large computational
effort athough the number of simulations is independent of the number of basic
variables. Thus, in reliability and risk assessment, several more efficient and accurate
calculation agorithms for analyzing complicated models have been proposed.

Wu® proposed an adaptive importance sampling (AlS) method that can be used to

compute component and system reliability and reliability sensitivities. The AlS approach



uses a sampling density that is proportional to the joint probability density function of the
random variables. Starting from an initial approximate failure domain, sampling
proceeds adaptively and incrementally to reach a sampling domain that is dlightly greater
than the failure domain to minimize oversampling in the safe region.

Torng, et. al® proposed a robust importance sampling method (RISM) to calculate
the reliability or its converse, the probability of failure. RISM first uses a tracking
scheme to locate the failure domain. Next, an efficient adaptive sampling scheme is used
to calculate the reliability with minimum computational effort.

Bucher’ suggested an iterative Monte Carlo simulation procedure, which utilizes
results from simulation to adapt the importance sampling density. He also reduced the
statistical error of the estimated failure probability. His method is especially suitable for

system reliability analysis since multiple failure modes need not be treated separately.

Computer Programs for Reliability Computation

Numerous computer programs have been developed by researchers to implement
the FORM/SORM algorithms.

NESSUS(Numerical Evaluation of Stochastic Structures Under Stress), devel oped
a the Southwest Research Institute® combines probabilistic analysis with a general-
purpose finite element/boundary element code. Structural analysisis performed using the
displacement method, the mixed-iterative formulation or the boundary element method,
and the iterative perturbation is used for sensitivity analysis.

PROBAN (PROBability ANalysis)® was developed at Det Norske Veritas (Hovik,

Norway). It was designed to be a general probabilistic analysis tool. PROBAN is



capable of estimating the probability of failure using the FORM or SORM. The
approximate FORM/SORM results can be updated through importance sampling. The
probability of genera events can be computed by Monte Carlo simulation and directional
sampling.

CALREL (CAL-RELiability)!° is a general-purpose structural reliability analysis
program designed to compute probability integrals. It incorporates four general
techniques for computing the probability of failure: (1) FORM, (2) SORM, (3) directional
simulation with exact or approximate surfaces, and (4) Monte Carlo simulation.

Khaless, et. a'' developed FEBREL (Finite Element-Based RELiability) as a
general-purpose, probabilistic, finite element computer program a Rockwell
International Corporation's Space System Division. They use the ANSYS genera-
purpose finite element computer program to provide the necessary computational
framework for analyzing complex structures, while the FEBREL reliability computer
program provides the basis for modeling, analysis of uncertainties, and computation of
probabilities.

Estes and Frangopol** developed RELSY S (RELiability of SY Stems) to compute
the system rdliability of structures modeled as a series-paralel combination of its

components.

Reliability-Based Optimization
Reliability-Based Optimization in Structural Engineering
In deterministic structural optimization problems, the objective function is usually

the volume or the weight of the structure and the constraints are related to code
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requirements for stresses or displacements. A large number of numerical procedures
have been developed to solve this type of problems. Most of the numerical algorithms
used in deterministic structural optimization are based on sequentia linear programming
and dual methods. In reliability-based structural optimization, the total expected costs
related to the structure such as weight can be used as the objective function. The
constraints are reliability requirements connected with the possible failure modes of the
structure.

Nikolaidis and Burdisso™ used the concept of Hasofer and Lind to approximate
the limit state function about the most probable point, and optimized a simplified aircraft
wing model for system reliability. Torng and Yang' optimized a structure using an
advanced reliability based optimization technique, and the reliability constraint was
approximated linearly. Using the efficient safety index computation developed by
Wang, et. a*®, they optimized frame and plate structures under the reliability constraint.
Multipoint split approximations were used to approximate the reliability constraint.
Chandu and Grandhi®® integrated the general purpose structural reliability analysis
program NESSUS with mathematical optimization capabilities for achieving optimal
designs. They developed RELOPT (RELiability based structura OPTimization), an
automated procedure for design optimization by integrating reliability analysis,
sensitivity analysis, function approximations and data base management. Hendawi and

Frangopol >’

presented a practical optimization approach to the design of both unstiffened
and stiffened hybrid composite plate girders for highway bridges.
Tu, et. a*® proposed a new approach called performance measure approach

(PMA) in the reliability-based design optimization. They found the conventiona
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reliability index approach (RIA) and PMA are consistent in prescribing the probabilistic
constraint.  PMA is inherently robust and more efficient in evaluating inactive
probabilistic constraints, while RIA is more efficient for violated probabilistic
constraints.

Yang and Ma™ developed an optimum design methodology based on reliability
for a composite structural system. A two-level optimization is adopted. In system level
optimization the structural total weight is taken as the design objective, and the
requirement of system reliability is the constraint. In member level optimization the
laminate reliability is taken as the design objective and keeping the weight or thickness

of laminate constant is the constraint.

Response surface model in optimization

Sometimes the computation of optimization related structural analysis is very
time-consuming, thus response surface models are used in optimization procedure.
Response surface methodology (RSM) is a collection of mathematical and statistical
techniques for solving problems in which the goal is to optimize the response Y of a
system or process that is influenced by n independent variables X4, Xo, ..., X.

Liaw and DeVries® developed a reliability-based optimal design process by
integrating reliability and variability analysis with optimization design processes using
the response surface approach. They used the response surfaces for ‘what-if' studies,
optimization, robust design, and trade-off studies. Ragon and Haftka®* used the response
surface model for weight optimization of a composite stiffened panel. The response

surface approximation is accomplished using the panel analysis/design code PASCO and
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using response surface modeling techniques. Using a finite number of PASCO
analysis/design computations, the optima panel weight function is approximated by a
guadratic polynomial over appropriate ranges of the loading and stiffness parameters.
Sevant, et. d®® proposed a partial differential equation (PDE) method to optimize the
design of flying wings. They used response surface methodology to construct smooth
analytic approximations of the noisy lift data. The combination of the PDE method RSM

results in a design approach that is both efficient and robust.
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RESPONSE SURFACE APPROXIMATION TECHNIQUE

I ntroduction

A response surface model is a algebraic model used to simulate the response of a
system. The response surface model is developed using regression analysis. The input
variables are called regressors or independent variables and the output is often called the
response or dependent variable. To construct a response model, one needs to perform a
number of simulations, then fit a response surface model using the least squares method
based on these simulation results. After forming the response surface model, one can
predict the system response for random values of independent variables within the
domain of validity of the model.

The response surface technique has been used in both reliability analysis and
structural optimization by other authors. In this study, this technique is used for a more
efficient prediction of buckling response for the structural model. In performing
reliability or optimization analysis, as many as several hundred or thousand buckling
responses based on different values of random variables may be necessary. The shell
analysis code used for buckling analysis takes approximately 4 minutes (Sun 350) for a
single buckling calculation. Hence, the time spent on one reliability analysis or

optimization run could easily exceed one day. When the response surface model is used

13
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in lieu of the shell buckling analysis code, the reliability analysis or optimization takes a

small fraction of that time without any significant loss in accuracy of predictions.

Response Surface Model/Linear Response M odel

For a demonstration of the response surface and linear regression model, asimple
example is given here. Suppose a system has two input variables X, and X,, and a
single output or response Y. The response variable Y isinfluenced by the values of the
two input variables. We want to build a response surface model to simulate the actual

response. The quadratic response surface model for this procedure is written as
Y =By + BiXy + BoXy + BaXi? + BaXo? + P X Xy (2.1
where S3,,5,,--- and f.are unknown constant coefficients. For afull quadratic model

. . . . n°+3n+2 L
with n independent variables, there will be atotal of — unknown coefficientsin

the model.
In a linear regression model for response variable Yin terms of X, and X,, we
can write
Y = Bo + B Xy + BaX, (2.2
where 3,, 3, and B, arethe three coefficients we need to find.
Suppose for the response surface model of (2.1) we have aset of n data points,
Yo, Xy X,
Y,, Xo1, X, 23)

Y., X, X

n? “nlr “¥n2
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The method of least squares is used to find the estimated values of Sy, 3, 85 iN

(2.1). Thatis, choose By, B,,-, Bs to minimize the sum of squares of the residuals
SS(Res) = Y (¥ ~)? (2.4)
1=1

Many statistical software packages may be used for creation of the response surface
models. SAS? was used in this study. The RSREG procedurein SASis used for finding
the coefficients in the full quadratic response surface models, and the REG procedure is

used to do the same for linear regression models.

Candidate Designs/Simulations

To construct the response surface model, a number of candidate designs,
including the input variables and the output are needed. We will use these data to fit the
least square curve, i.e., the response surface. A series of random values for each variable
are generated within specified limits for lower and upper bounds. These bounds define
the region of validity for the response surface model.

For the reliability analysis and optimization using a single globa buckling
response model, alarge number of Monte Carlo simulations were performed. In contrast,
when using the sequential local response technique, the n+1 integration technique® (see
Appendix C) was used, which requires only n+1 candidate simulations in constructing a

locally-accurate response model, where n isthe number of regressors.
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Validation of Models

Before using a regression model, it is important to keep in mind that the model
can only be used within its domain of validity. This domain is based on the limits
specified by the lower and upper bounds on each random variable in performing the
simulations. Besides the limits on the independent variables, there are severa statistics
that can be used to check the validity of the response surface model or linear regression

model.
1. R?
R? isdefined as

Rzzﬁ
SSTO

(2.11)
where SSR is the regression sum of squares, i.e., the measure of the variation of the fitted
regression values around the mean; SSTO is the total sum of squares, i.e., the measure of
the variation of the observed values around the mean. R* measures the proportion of the
variation of the candidate responses around the mean that is explained by the fitted
regression model. The closer R? isto 1, the greater the degree of association between
X'sand Y. However, R* alone may not be a good measure of goodness-of-fit.
2. Root MSE

Many authors use the RMSE as a criterion for judging the accuracy of the model.

The root mean square error (RMSE) is defined as

1 n ~
RMSE = Y. -Y.)2 212
\/(N_p);u ) (2.12)
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where p isthe number of parameters in the response surface or linear regression model,
n isthe number of candidate data points, Y, are the candidate response values, and Y, are

the regression response values. A small RMSE means a good response surface or linear
regression model.

3. t-test

This method is not often used in engineering because it is somewhat more
complicated than the computation of RMSE and R?.

First one must obtain an independent set of data (not the candidate data used to

build the response surface). Let the independent set of data be defined as

Y5 X Xige o X

p 1=1,...,m

Then, put X;--- X into the regression model to get
i1 ip

YAiD=BAo+BA1 xi?+"'+épxig (213

The prediction error at each point is estimated as

o =YY, (2.14)
Where the average J; = 1 Z & isameasure of the biasin using the mode! to predict Y.
mé&

To test for significant bias, test H,: s =0 vs H, : s #0. Usethet test:

=2 (2.15)

Js*(8)/m

Reject H, if [t|>t,,,,. Reecting H, indicates significant bias.



Chapter 111
RELIABILITY ANALY SIS OF COMPOSITE CYLINDRICAL

SHELLS UNDER AXIAL COMPRESSION

Deter ministic Buckling Analysis
For the calculation of axial buckling load Ny, the anisotropic cylindrical shell
analysis code developed by Jaunky? is used. It is preferred to use this code because of its
ease of modeling cylindrical shells. Because of the restrictions in this code, the circular
cylinder was modeled as a semi-circular shell with symmetric boundary conditions along

the two unloaded edges. The loaded edges were treated as clamped in this study.

P TR
Sy‘/ v
@ Edge 1 Edge 3
— Edge 2
X
X Physical Model Computational Model

Figure 3.1 Circular cylinder and its corresponding computational model used for buckling
analysis
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The geometric and material properties of four types of cylinders are given in
Table 3.1, where L is the cylinder length, D the cylinder diameter, and E,,, E,,, v, and
G,, the material properties.

In defining the boundary conditions, the cylinder is alowed to undergo end
shortening along edge 4 with edge 2 kept fixed. The condition of symmetry requires the

v displacement and ¢, rotation to be kept zero along the unloaded edges of the model.

All boundary conditions are specified in Table 3.2.

Table 3.1 Geometric and material properties for cylinder specimens

Specimen L,in D,in toy, N Eqy, psi Ex, psi Vi, Gy, ps
1 14 15.75 0.005 18.5780e6 1.64e6 0.0265 0.8737e6
2 14 15.75 0.005 18.6705e6 1.64e6 0.0264 0.8780e6
3 14 15.75 0.005 19.2588e6 1.64€6 0.0255 0.9057e6
4 14 15.75 0.005 18.6154e6 1.64€6 0.0264 0.8754¢e6

Table 3.2 Description of boundary conditions for the computational model®

Displacement Edge 1 Edge 2 Edge 3 Edge 4
U 0 1 0 0
\% 1 1 1 1
W 0 1 0 1
) 0 1 0 1
@, 1 1 1 1

20 = free, 1 = fixed



20

Of the three options available in the shell analysis code, the strain-displacement
relationship was modeled using Sanders-Koiter shell theory. The displacement function
was represented by a Ritz approximation using Legendre polynomial interpolation
functions. The buckling load is then found from an eigenvalue analysis.

For validation purposes, we compared the results of the shell code based on a 12"
degree Legendre polynomia interpolation function to those found using the finite-
element code STAGS®™. Here a mesh size of 51 x 169 quadrilateral elements was used,
with the greater mesh density in the circumferencia direction.

Table 3.3 shows the computational predictions for the buckling force for four
different cylinder specimens al with 16 layers but with different ply patterns. The
buckling loads in al cases correspond to the first symmetric buckling mode. Specimen 2
with a quasi-isotropic ply pattern is found to be the strongest of the four examined. The
errors in buckling load from the shell code are shown inside parenthesis, and they
indicate that the shell code is based on a somewhat stiffer model of the cylinder. This
error could be reduced using a higher-degree polynomial but at a significant increase in

computational cost.

Table 3.3 Comparison of predicted buckling loads

Axial Buckling Force, Ib

Specimen Ply Distribution Shell Code STAGS
1 [+45/F 45] 5 111,349 (7.0%) 104,044
2 [£45/0/90] 6 185,420 (2.8%) 180,443
3 [£45/04/ F 45]s 158,319 (2.4%) 154,655
4 [£45/904/ % 45]s 167,717 (0.3%) 167,175
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Probabilistic Buckling Analysis

The buckling load predictions in Table 3.3 assume no variability or randomnessin
any of the contributing parameters. However, variations in material properties, geometric
parameters and loading could alter the buckling predictions, and a different picture may
emerge when each parameter is assumed to be random with a particular mean and scatter
such as those specified in Table 3.4. The statistical characteristics of the material in
Table 3.4 correspond to A4 12k/3502 (carbon-epoxy) unidirectional tape as specified in
MIL-HDBK-17-2E%".  The statistics associated with the geometric parameters

(L,D, tand 68) are assumed in this case and are not based on any experimental

observations. The ply pattern considered for the probabilistic buckling analysis is the

same as that for specimen 4 in Table 3.3.

Table 3.4 Definition of random variables

Random Variable  Distribution Coefficient of
Mean
(No.) Type Variation (%)
L,in(2) Normal 14 1
D,in(2) Normal 15 1
toy, iN (3-18) Normal 0.005 1
By, deg. (19-34) Normal [+45/904/ F 45]s 1
Ei1, psi (35) Normal 1.8e7 3.19
Ex, ps (36) Normal 1.35e6 4.26
vi2 (37) Normal 0.226 5

Gy, psi (38) Normal 5.43e5 5.16
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To determine the probabilistic buckling load, a Monte Carlo simulation was
performed as described in Appendix B. For each simulation cycle, random values were
generated for the 38 variables in Table 3.4. Note that each ply angle and ply thicknessis
treated as a separate random variable. The shell anaysis code was used to find the
buckling load in each cycle.

A total of 5,314 random experiments were conducted to determine the
distribution, mean, and coefficient of variation of the buckling load. The histogram for
the buckling load, P, shown in Fig. 3.2, indicates a normal probability distribution with
a mean of 151,203 Ib and a standard deviation of 4,245 |b. In comparison, the
deterministic buckling load with all random variables fixed at their corresponding mean

values (see Table 3.4) isfound to be 151,310 Ib.

135000 138000 141000 144000 147000 150000 153000 156000 159000 162000 165000
P_(Ib)

Figure 3.2 Histogram for buckling load, P
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The Monte Carlo simulations were performed for two reasons. (1) to measure the
reliability of the cylinder by calculating the probability of failure directly from the results
of the Monte Carlo simulation; (2) to estimate cylinder reliability by calculating the
Hasofer-Lind index for which a regression model of buckling response based on these

simulation datais used.

Structural Reliability Analysis
The limit state function for cylinder buckling is formulated as
g(X)=Ry —-P 3.1
where P is the applied axial force on the cylinder, P, is the corresponding buckling force,
and X is the vector of random variables. According to Eq. (3.1), g < 0 meansfailure, g >
0 indicates safety, and g = O represents the limit state (surface separating the failure and
safe regions). In this case, g is a function of 39 random variables, 38 of which are
defined in Table 3.4 with the 39" variable being the applied load P, which is assumed to
be normally distributed with an assumed mean of 143,690 |b and COV = 5%.
The structural reliability is estimated in terms of Hasofer-Lind reliability index
with the corresponding probability of failure compared with that obtained from a direct

Monte Carlo simulation.

Hasofer-Lind Reliability Index

The first-order second moment method developed by Hasofer and Lind® gives a

measure of structural reliability in terms of the reliability or safety index [, which is
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defined as the shortest distance between the origin of the reduced coordinate system and

the failure surface defined by the limit state (g = 0) as shownin Fig 3.3.

g(X)<

X" (Design Point)

g(X)=0

9(X)>

>
Xy

Figure 3.3 Hasofer-Lind reliability index: nonlinear performance function

The point on the failure surface corresponding to g is called the design point or

the most probable failure point (MPP) with the coordinates defined as

%

x =-o; B, i=12,.,39 (32)

|
Q
=

with direction cosines given by

a =———=—=— i=12,..,39 (3.3)
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where x| corresponds to % in reduced coordinate system. When limit-state function is
nonlinear, asisthe case here, B isdetermined through an iterative procedure based on an
initial estimate for the coordinates of MPP. This procedureis described in Appendix C.

The advantage of estimating reliability with the Hasofer-Lind approach is that it
only depends upon the mean and variance (first and second moment properties) of
individual random variables and not their distribution type®. The disadvantage is that, for
non-normal random variables, accuracy is sacrificed. The probability of failure is
directly related to 8 according to the relation

Pr = ®(-p) (34)

where @ isthe cumulative distribution function (CDF) of the standard normal variate.

In applying the Hasofer-Lind reliability index approach to the problem of cylinder
reliability, the limit state function defined by EQ. (3.1) must be expressed as

9(X1, X5,...,X39) with al uncorrelated and independent random variables transformed to
the reduced coordinate system such that px: =0 and ox =1. In Eaq. (3.1), the limit
state function is defined as the difference between the critical buckling load and the
applied load with the buckling load being an implicit function of the 38 random variables
(see Table 3.4).

Since the calculation of £ is an iterative procedure, the buckling analysis code
may need to be called hundreds of times for 8 calculation. Since one run of the buckling
analysis code takes about 7 minutes using a Sun 350 microcomputer, a 3 calculation

could take more than 24 hours. Thus for the sake of efficiency, instead of using the shell

code directly in the calculation of reliability index, an algebraic response surface model
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of the buckling load was used. Another advantage of this approach is an efficient
calculation of sensitivity derivatives of the limit-state function with respect to individual
random variables. The Monte Carlo simulation results found previously for the
probabilistic buckling load were used to generate a second-order response surface model
for the buckling load.

The equation for P, was generated rapidly using the SAS mathematical software
based on the least squares technique. The resulting model is a full quadratic polynomial
with amean of 151,203 Ib, root MSE of 150.85 and R? of 0.9989, which means the model

will be quite good for prediction of P, .
For the cylinder in Table 3.4 with the specified loading condition, we get
B =091
which corresponds to a probability of failure

®(-B)=0.181.

Monte Carlo Smulation

The limit state function is defined as

g=P, -P (3.5

cr

We take g<0 as a failure due to buckling. P, isthe buckling load calculated by the shell

analysis code. The applied load P isthe specified applied |oad.

Using the limit-state function formulation in Eq. (3.1) and the response surface
model for the buckling load, a direct Monte Carlo simulation was performed. Specimen
failure in buckling is detected when the limit state function g(x) = O is violated in an

experiment. The probability of failureisthen defined as
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P = —_ 36
PN (3.6)

where N is total number of simulations andN, is the number of failures. The

coefficient of variation of failure probability found as

,(1— P )Ps
COV(P;) = TN 37)

f
The same number of simulation cycles were run as before (5314) and 988
instances were found where g < 0. This resulted in a probability of failure of 0.186 for
this specimen based on the assumed distribution, mean and scatter for the applied load,
which is very close to what was obtained using Hasofer-Lind method. The plots of Ps

and COV are shown in Fig. 3.4 with the final COV = 2.87%.

0.25

02 W
0.1 —=—CQOV
0.05 M

0 1000 2000 3000 4000 5000 6000
Number of Cycles

Figure 3.4 Results of Monte Carlo ssmulation for buckling reliability
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Sensitivity Analysis
Deterministic Sensitivities of Limit State Function
The partial derivative of g with respect to each random variable gives a
deterministic measure of its sengitivity to that variable. The relative importance of
individual random variables is found by calculating the normalized sensitivities using the

equation

L L
X (38)

_a| [ <Ha
i mt‘ / 2 B

and then normalizing the values with respect to one having the largest magnitude. The
deterministic and normalized sensitivities at MPP for the [£45/904/F 45]s specimen are
given in Table 3.5 with the latter values also plotted in Fig. 3.5. The normalized
sensitivities indicate that the applied load has the greatest influence on the limit state
function, followed closely by Ej; and cylinder diameter at a distant third. The effect of
applied load is evident from the limit-state function formulation; however, the effects of
E;1 and cylinder diameter were not intuitively obvious prior to this analysis. The effect
of individual ply thickness is also seen to be more significant than the corresponding

orientation angle.
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Figure 3.5 Normalized sensitivities



Table 3.5 Deterministic sensitivities of limit state function for specimen 4

R m
Vgrniict;le (99 /0Xi)- V, (¥ Jnom.
=% 6.7325E-03 4.5051E-01 7.9947E-01
Ex 1.3887E-02 7.0404E-02 1.2494E-01
Vi, 5.7268E+03 4.8772E-03 8.6550E-03
G 2.0828E-02 4.2489E-02 7.5400E-02
Ply Thickness 1 3.4174E+06 6.4401E-02 1.1429E-01
Ply Thickness 2 3.6443E+06 6.8676E-02 1.2187E-01
Ply Thickness 3 3.3224E+06 6.2610E-02 1.1111E-01
Ply Thickness 4 3.3929E+06 6.3939E-02 1.1346E-01
Ply Thickness 5 3.3511E+06 6.3152E-02 1.1207E-01
Ply Thickness 6 3.2515E+06 6.1274E-02 1.0874E-01
Ply Thickness 7 3.6541E+06 6.8861E-02 1.2220E-01
Ply Thickness 8 4.7967E+06 9.0388E-02 1.6040E-01
Ply Thickness 9 4.6600E+06 8.7811E-02 1.5583E-01
Ply Thickness 10 3.7226E+06 7.0151E-02 1.2449E-01
Ply Thickness11l  2.8606E+06 5.3910E-02 9.5667E-02
Ply Thickness 12 2.7974E+06 5.2719E-02 9.3553E-02
Ply Thickness 13 2.8313E+06 5.3358E-02 9.4688E-02
Ply Thickness 14 2.9109E+06 5.4857E-02 9.7348E-02
Ply Thickness 15 4.3647E+06 8.2248E-02 1.4596E-01
Ply Thickness 16 4.2379E+06 7.9859E-02 1.4172E-01
Ply Angle 1 -2.7543E+02 -4.6729E-02 -8.2925E-02
Ply Angle 2 -2.3055E+02 3.9105E-02 6.9394E-02
Ply Angle 3 2.0942E+02 7.1034E-02 1.2606E-01
Ply Angle4 1.5349E+02 5.2066E-02 9.2394E-02
Ply Angle5 1.0548E+02 3.5783E-02 6.3500E-02
Ply Angle 6 6.5501E+01 2.2222E-02 3.9434E-02
Ply Angle7 8.9056E+01 -1.5108E-02 -2.6810E-02
Ply Angle 8 -3.7164E+02  -6.3055E-02  -1.1190E-01
Ply Angle9 -3.6598E+02 -6.2096E-02 -1.1019E-01
Ply Angle 10 2.0173E+02 -3.4225E-02 -6.0735E-02
Ply Angle 11 -2.0116E+01 -6.8251E-03 -1.2112E-02
Ply Angle 12 -2.0665E+01  -7.0114E-03  -1.2442E-02
Ply Angle 13 -1.1853E+01 -4.0215E-03 -7.1365E-03
Ply Angle 14 -5.6443E-01 -1.9150E-04  -3.3982E-04
Ply Angle 15 3.2673E+02 -5.5435E-02 -9.8373E-02
Ply Angle 16 -3.5971E+02 -6.1032E-02 -1.0831E-01
Diameter 2.3608E+03 1.3344E-01 2.3680E-01
Length -1.5325E+03 -8.0898E-02 -1.4356E-01
Applied Load, P -1.0000E+00  -5.6351E-01 = -1.0000E+00

30
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Probabilistic Sengitivities of the Reliability Index
The probabilistic sensitivities of B with respect to the mean and standard

deviation of individual random variables are found as

- . i=12,..,39 (3.9

= . i=12,..,39 (3.10)

The probabilistic sensitivities found from Egs. (3.14) and (3.15) for
[+45/904/ F 45]s specimen are shown in columns 2 and 4 of Table 3.6. The corresponding
normalized probabilistic sensitivities, shown in columns 3 and 5 of Table 3.6, are

calculated using the ratios

Ay
Z Hx i=12,..,39 (3.11)
My,

dﬂx

» 04

n dax ZWJX i=12,..,39 (3.12)

and dividing each ratio by the largest value in the group as

(=i G =M &1 & 11 8 (3.13)

max

(r’i )norm = L
n

max

s Moae = MaX([0 L0, |-+ 105 D (3.14)



Table 3.6. Probabilistic sensitivities of the reliability index for specimen 4
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Random

Variable (aB1 dHXi) ((i ) norm (aB1 dO_Xi) ('7| ) norm
Eyy 8.1380E-07 8.4340E-01 -3.5310E-07 2.8950E-01
Ex 1.6790E-06 1.3050E-01 -1.5050E-07 1.2360E-02
Vi, 6.9220E-01 9.0070E-03 -5.0290E-03 8.1130E-05
G2 2.5170E-06 7.8710E-02 -1.6490E-07 6.5970E-03
Ply Thickness 1 4.1310E+02 1.1890E-01 -7.9250E+00 5.6570E-04
Ply Thickness 2 4.4050E+02 1.2680E-01 -9.0090E+00 6.4310E-04
Ply Thickness 3 4.0160E+02 1.1560E-01 -7.4870E+00 5.3450E-04
Ply Thickness 4 4.1010E+02 1.1810E-01 -7.8100E+00 5.5760E-04
Ply Thickness 5 4.0500E+02 1.1660E-01 -7.6200E+00 5.4400E-04
Ply Thickness 6 3.9300E+02 1.1310E-01 -7.1740E+00 5.1210E-04
Ply Thickness 7 4.4170E+02 1.2720E-01 -9.0580E+00 6.4660E-04
Ply Thickness 8 5.7980E+02 1.6690E-01 -1.5610E+01 1.1140E-03
Ply Thickness 9 5.6320E+02 1.6220E-01 -1.4730E+01 1.0520E-03
Ply Thickness 10 4.4990E+02 1.2950E-01 -9.4030E+00 6.7130E-04
Ply Thickness 11 3.4580E+02 9.9540E-02 -5.5510E+00 3.9630E-04
Ply Thickness 12 3.3810E+02 9.7340E-02 -5.3090E+00 3.7900E-04
Ply Thickness 13 3.4220E+02 9.8520E-02 -5.4370E+00 3.8820E-04
Ply Thickness 14 3.5180E+02 1.0130E-01 -5.7470E+00 4.1030E-04
Ply Thickness 15 5.2760E+02 1.5190E-01 -1.2930E+01 9.2280E-04
Ply Thickness 16 5.1220E+02 1.4750E-01 -1.2180E+01 8.6980E-04
Ply Angle 1 -3.3290E-02 -8.6260E-02 -4.6310E-04 2.9760E-04
Ply Angle 2 -2.7870E-02 7.2200E-02 -3.2460E-04 2.0850E-04
Ply Angle3 2.5310E-02 1.3120E-01 -5.3560E-04 6.8820E-04
Ply Angle 4 1.8550E-02 9.6140E-02 -2.8760E-04 3.6960E-04
Ply Angle5 1.2750E-02 6.6070E-02 -1.3590E-04 1.7460E-04
Ply Angle 6 7.9170E-03 4.1030E-02 -5.2420E-05 6.7360E-05
Ply Angle7 1.0760E-02 -2.7890E-02 -4.8450E-05 3.1130E-05
Ply Angle 8 -4.4920E-02 -1.1640E-01 -8.4340E-04 5.4190E-04
Ply Angle9 -4.4240E-02 -1.1460E-01 -8.1790E-04 5.2550E-04
Ply Angle 10 2.4380E-02 -6.3180E-02 -2.4850E-04 1.5960E-04
Ply Angle 11 -2.4310E-03 -1.2600E-02 -4.9470E-06 6.3570E-06
Ply Angle 12 -2.4980E-03 -1.2940E-02 -5.2090E-06 6.6940E-06
Ply Angle 13 -1.4330E-03 -7.4240E-03 -1.7120E-06 2.2010E-06
Ply Angle 14 -6.8220E-05 -3.5350E-04 -4.0480E-09 5.2020E-09
Ply Angle 15 3.9490E-02 -1.0230E-01 -6.5180E-04 4.1880E-04
Ply Angle 16 -4.3480E-02 -1.1270E-01 -7.9020E-04 5.0770E-04
Diameter 2.8530E-01 2.4640E-01 -1.1340E-02 2.4290E-03
Length -1.8520E-01 -1.4930E-01 -4.4620E-03 8.9190E-04
Applied Load, P -1.2090E-04 -1.0000E+00 -9.7480E-05 1.0000E+00
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The plot of normalized probabilistic sensitivities with respect to the mean value of
individual random variables is shown in Fig. 3.6. These sensitivities reconfirm, to some
extent, the deterministic sensitivity results in that the mean values of the applied load and
E;; are found to have a much stronger influence on the reliability index than those of
other random variables. The influence of mean cylinder diameter is found to be less
significant as was also indicated by deterministic sensitivities of the limit state function in
Fig. 3.5. Besides these top three random variables (P, E;;, and D), the mean ply
thicknesses are in the second category in terms of influence on . However, if the effect
of total as opposed to individual ply thicknesses is examined, a much greater sensitivity

would be observed.
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Figure 3.6 Normalized probabilistic sensitivities of 3 with respect to the mean value of
each random variable
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Figure 3.7 Normalized probabilistic sensitivities of B with respect to the standard
deviation of each random variable

The plot of normalized probabilistic sensitivities with respect to the standard

deviation of each random variable is shown in Fig. 3.7. The plot indicates that 8 is

significantly more sensitive to uncertainty in P and Ej; than the other 37 random

variables.

Effectsof Distribution Typeand COV of the Applied Load on 3

Since the results of reliability analysis indicate a large sensitivity to the applied

load, the effects of the distribution type and coefficient of variation of P on 3 were aso

examined. Two different distribution types (Normal and Lognormal) and three different
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values for coefficient of variation of P were considered. In both cases, the applied load
was assumed to have a mean of 143,690 |b. The critical buckling load was determined
from the algebraic response surface model and was not affected by the variance in
applied load.

The results shown in Table 3.7 indicate that the coefficient of variation has a
significant influence on B whereas the effect of the distribution type is relatively
insignificant. 1t must be noted that in both cases the remaining 38 random variables were
assumed to have normal distribution. This fact is important in the case of Monte Carlo
simulation, but irrelevant in the case of Hasofer-Lind reliability index calculation. The
reason the values of [ associated with the two distribution types are not exactly identical
is because in the lognormal case, the data is not dispersed symmetrically about the mean,

asitisin the normal case.

Table 3.7 The effects of distribution and coefficient of variation of P

Hasofer-Lind Monte Carlo Simulation
P Distribution ~ COV (%) B P P
1 1.7315 .042 .050
Normal 5 0.9099 181 .186
10 0.5038 .309 .308

1.7326 .042 .050
0.9188 79 184

1
Lognormal 5
9 10 0.5421 295 295
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Resultsof Specimens 1, 2and 3

A sengitivity analysis was conducted for specimens 1, 2 and 3. Their distribution
types, mean values and coefficients of variations of random variables are specified in
Table 3.4. The ply pattern specified, asindicated previously in Table 3.3, are as follows:

Specimen 1. [+£45/x 45],¢
Specimen 2: [+45/0/90] s
Specimen 3: [£45/04/F 45]s
The deterministic sensitivity derivatives are shown in Table 3.8 while those for

the probabilistic approach are shown in Table 3.9.



Table 3.8 Deterministic sensitivities of limit state function for specimen 1, 2 and 3

Random ( Y )norm.

Variable . . ,
Specimen 1 Specimen 2 Specimen 3
=% 5.3177E-01 8.3212E-01 7.3822E-01
Ex 6.5451E-02 6.4709E-02 1.4473E-01
Vi, 1.3888E-02 5.1279E-03 9.3684E-03
G2 4.8625E-01 7.3314E-02 1.0011E-01
Ply Thickness 1 1.1169E-01 1.2143E-01 4.2650E-02
Ply Thickness 2 1.0578E-01 1.5171E-01 4.5929E-02
Ply Thickness 3 1.1326E-01 1.0317E-01 1.4124E-01
Ply Thickness 4 1.1694E-01 1.0201E-01 1.4299E-01
Ply Thickness 5 1.2285E-01 9.1156E-02 1.4104E-01
Ply Thickness 6 1.2575E-01 9.7654E-02 1.4208E-01
Ply Thickness 7 1.1672E-01 1.2081E-01 1.3274E-01
Ply Thickness 8 1.3075E-01 1.3460E-01 1.5041E-01
Ply Thickness 9 1.2058E-01 1.3509E-01 1.4489E-01
Ply Thickness 10 1.2552E-01 1.2115E-01 1.3291E-01
Ply Thickness 11 1.2386E-01 1.0365E-01 9.1386E-02
Ply Thickness 12 1.1950E-01 1.3077E-01 9.4767E-02
Ply Thickness 13 1.2939E-01 1.2552E-01 8.8619E-02
Ply Thickness 14 1.3443E-01 1.1060E-01 9.1501E-02
Ply Thickness 15 1.2047E-01 1.0515E-01 1.5087E-01
Ply Thickness 16 1.1183E-01 1.1256E-01 1.4216E-01
Ply Angle 1 -3.3156E-01 1.1028E-02 4.0752E-02
Ply Angle 2 -2.6414E-01 -5.8536E-02 -2.4857E-02
Ply Angle 3 -1.9408E-01 -8.6896E-06 9.8673E-07
Ply Angle4 -1.2057E-01 -3.2414E-02 7.0570E-07
Ply Angle5 -6.4461E-02 -4.3119E-02 3.2963E-07
Ply Angle 6 -1.3488E-02 -7.1985E-07 1.6328E-07
Ply Angle 7 3.4386E-02 2.3961E-04 9.6772E-02
Ply Angle 8 7.3834E-02 2.0462E-02 1.3748E-01
Ply Angle9 1.1022E-01 2.3762E-02 1.4217E-01
Ply Angle 10 1.3918E-01 6.1652E-03 1.2562E-01
Ply Angle 11 1.6028E-01 -1.3151E-06 9.9413E-11
Ply Angle 12 1.7688E-01 -3.9031E-02 1.1514E-09
Ply Angle 13 1.8826E-01 -2.8110E-02 3.2642E-12
Ply Angle 14 1.9029E-01 -2.1580E-07 1.3610E-09
Py Angle 15 1.9032E-01 1.8791E-03 1.0796E-01
Ply Angle 16 1.8347E-01 4.5697E-04 8.9776E-02
Diameter -1.8647E-01 3.7199E-02 -6.0124E-02
Length 3.9204E-01 7.5305E-02 1.6076E-01
Applied Load, P = -1.0000E+00 -1.0000E+00 -1.0000E+00
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Table 3.9 Probabilistic sensitivities of the reliability index for specimen 1,2 and 3

Random (& ) norm (r’I ) norm
Variable

Specimenl  Specimen2  Specimen3  Specimenl  Specimen2  Specimen 3
En 3.26E-01  9.8520E-01 7.0538E-01 4.3327E-02 3.9508E-01 2.0253E-01
Ex 4.16E-02  7.3266E-02 1.3919E-01 1.2570E-03 3.8966E-03 1.4063E-02
Vi 8.90E-03  5.7717E-03 9.0385E-03 7.9153E-05 3.3313E-05 8.1700E-05
G2 2.82E-01 8.3382E-02 9.6267E-02 @ 8.4806E-02 7.4046E-03 9.8701E-03
Ply Thickness1 ~ 7.17E-02  1.3667E-01 4.1158E-02 2.0568E-04 7.4716E-04 6.7747E-05
Ply Thickness2 ~ 6.79E-02  1.7078E-01 4.4323E-02 1.8447E-04 1.1666E-03 7.8631E-05
Ply Thickness3 ~ 7.27E-02  1.1611E-01 1.3629E-01 2.1149E-04 5.3923E-04 7.4279E-04
Ply Thickness4  7.51E-02  1.1480E-01 1.3797E-01 2.2542E-04 5.2713E-04 7.6155E-04
Ply Thickness5  7.89E-02  1.0258E-01 1.3609E-01 2.4873E-04 4.2086E-04 7.4101E-04
Ply Thickness6 ~ 8.07E-02  1.0990E-01 1.3709E-01 2.6063E-04 4.8305E-04 7.5193E-04
Ply Thickness7  7.49E-02  1.3597E-01 1.2808E-01 2.2460E-04 7.3946E-04 6.5603E-04
Ply Thickness8  8.39E-02  1.5150E-01 1.4513E-01 2.8171E-04 9.1806E-04 8.4246E-04
Ply Thickness9  7.74E-02  1.5205E-01 1.3980E-01 2.3965E-04 9.2480E-04 7.8171E-04
Ply Thickness10  8.06E-02  1.3635E-01 1.2825E-01 2.5969E-04 7.4368E-04 6.5793E-04
Ply Thickness11 ~ 7.95E-02  1.1664E-01 8.8185E-02 2.5285E-04 5.4423E-04 3.1101E-04
Ply Thickness12  7.67E-02  1.4719E-01 9.1447E-02 2.3540E-04 8.6655E-04 3.3447E-04
Ply Thickness13  8.31E-02  1.4128E-01 8.5515E-02 2.7594E-04 7.9841E-04 2.9247E-04
Ply Thickness14  8.63E-02  1.2447E-01 8.8296E-02 2.9780E-04 6.1972E-04 3.1187E-04
Ply Thickness15  7.73E-02  1.1834E-01 1.4557E-01 2.3924E-04 5.6017E-04 8.4777E-04
Ply Thickness16 ~ 7.18E-02  1.2668E-01 1.3717E-01 2.0617E-04 6.4196E-04 7.5274E-04
Ply Angle 1 -2.14E-01  1.2404E-02 3.9328E-02 1.8272E-03 6.1541E-06 6.1882E-05
Ply Angle 2 -1.70E-01  -6.5816E-02 -2.3990E-02 1.1582E-03 1.7328E-04 2.3010E-05
Ply Angle 3 -1.25E-01 0.0000E+00 0.0000E+00 6.2449E-04 7.8354E-05 2.7278E-05
Ply Angle 4 -7.76E-02  -3.6450E-02 0.0000E+00 2.4066E-04 5.3136E-05 1.9509E-05
Ply Angle 5 -4.15E-02  -4.8486E-02 0.0000E+00 6.8722E-05 9.4044E-05 9.1126E-06
Ply Angle 6 -8.67E-03  0.0000E+00 0.0000E+00 3.0066E-06 6.4909E-06 4.5138E-06
Ply Angle 7 2.21E-02  2.6949E-04 9.3382E-02 1.9520E-05 2.9304E-09 3.4875E-04
Ply Angle 8 474E-02  2.3017E-02 1.3265E-01 8.9930E-05 2.1195E-05 7.0383E-04
Ply Angle 9 7.08E-02  2.6730E-02 1.3718E-01 2.0029E-04 2.8575E-05 7.5282E-04
Ply Angle 10 8.93E-02  6.9345E-03 1.2122E-01 3.1917E-04 1.9228E-06 5.8780E-04
Ply Angle 11 1.03E-01 0.0000E+00 0.0000E+00 4.2311E-04 1.1859E-05 2.7482E-09
Ply Angle 12 1.13E-01 -4.3890E-02 0.0000E+00 5.1521E-04 7.7046E-05 3.1829E-08
Ply Angle 13 1.21E-01 -3.1611E-02 0.0000E+00 5.8347E-04 3.9980E-05 9.0238E-11
Ply Angle 14 1.22E-01 0.0000E+00 0.0000E+00 5.9612E-04 1.9459E-06 3.7623E-08
Ply Angle 15 1.22E-01  2.1135E-03 1.0418E-01 5.9626E-04 1.7811E-07 4.3409E-04
Ply Angle 16 1.18E-01  5.1397E-04 8.6632E-02 5.5422E-04 1.0479E-08 3.0019E-04
Diameter -1.20E-01  4.1848E-02 -5.8030E-02 5.7638E-04 7.0049E-05 1.3475E-04
Length 2.51E-01 8.4734E-02 1.5511E-01 2.5209E-03 2.8718E-04 9.6247E-04
Applied Load, P -1.00E+00 -1.0000E+00 -1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
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Figure 3.8 Deterministic sensitivities (y;),,, of specimen 1, 2 and 3
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Figure 3.9 Normalized probabilistic sensitivities of 3 with respect to the mean value of
each random variable for specimen 1, 2 and 3
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@ specimen 1
W specimen 2
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Figure 3.10 Normalized probabilistic sensitivities of [ with respect to the standard
deviation of each random variable for specimen 1, 2 and 3

For the deterministic sensitivities, Pand E;; have the biggest influence in al 3
specimens. G, aso has a relatively big influence in specimen 1. For the probabilistic
sensitivities of 3 with respect to the mean values of each variable, the applied load and
E, ill have the biggest influence in al 3 specimens. For normalized probabilistic
sensitivities of [ with respect to the standard deviation of each random variable, the
applied load and E;, have stronger influence than other variables in specimens 2 and 3,
while the applied load and G,, have the strongest influence in specimen 1. With some
exceptions, the reliability of these specimens, as judged by the normalized sensitivity

derivatives, is still most sensitive to the applied load P and Y oung's Modulus E,;.



Chapter IV
RELIABILITY-BASED OPTIMIZATION OF COMPOSITE

CYLINDRICAL SHELLSUNDER AXIAL COMPRESSION

I ntroduction

This chapter discusses the reliability-based optimization of laminated circular
cylinders under axial compression. Structural reliability is measured in terms of Hasofer-
Lind reliability index, as discussed in Chapter 3.

The optimization analysis is based on the response surface approximation of axial

buckling force, P, . In generating the response surface model, two different techniques

are considered. In the first technique, a Monte Carlo ssimulation is conducted to find a
nonlinear model that provides a fairly accurate estimate of buckling load at any design
point over a wide range of values for individual random variables (including the design
variables). This approach requires a relatively large number of Monte Carlo simulations
in order to accurately capture the effect of variation in each variable on the buckling load.
Thisisreferred to as the global response surface technique.

In the second technique, a locally accurate response surface model is constructed
based on the n+1 point integration technique where n isthe number of random variables
being considered. This technique is used to generate a new response surface model for

each design search iteration cycle focused on a small subregion of design space.
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Global Response Surface Technique

A single global response surface model for axial buckling force is generated as a
function of all material and geometric random variables. The term global implies validity
over the entire design domain confined by bounds imposed on individua random
variables. For a 16-ply symmetric laminate, there are 22 random variables to be included
in the response surface equation. The list of these random variables in shown in Table
4.1.

Because of the nonlinear relationship between the buckling load and most of the
random variables and the need for the model to be accurate over the entire design
domain, afully quadratic response surface model needs to be generated. A full quadratic
equation with all higher order terms present result in 276 unknown coefficients. In its

generic form, this equation can be written as

2 2 )
S — 2
F>Cr-ao+IZqui +.Zc'xi +quz+ldixixj 4.1
To obtain an accurate (i.e., very good) estimate of the unknown coefficients,
3,000 Monte Carlo simulation cycles were conducted. Each random variable in this
simulation was assumed to have a uniform distribution with the lower and upper bounds
calculated according to the relations

X! = (1-¢)py

(4.2)
X = (L+¢) Ly

The values of mean and incremental change in each random variable is shown in

Table4.1.



Table 4.1 Mean vaues and bound increments used in Monte Carlo simulation

Random

Varisble H %)
E,, ps 1.8E7 4
E,,,ps 1.35E6 5

Vo, 226 6

G,, ps 5.43E6 7
toy, N .005 50
6,, deg. 45 26
6,, deg. -45 26
6,, deg. 90 26
6,, deg. 90 26
6, , deg. 90 26
6, deg. 90 26
6, , deg. -45 26
6;, deg. 45 26

Diameter, in 15 50

Length, in 14 50

For each random variable, we can obtain the uniformly distributed X, by
X =X+ (X =XDr (4.3)
where r isauniformly distributed number with O<r <1.

We used the response surface analysis procedure in SAS software for calculating
the unknown coefficients in the response surface equation.

Before using the response surface equation in the optimization analysis, it was
checked for accuracy. The mean buckling load is found to be 144,218 Ib with a
coefficient of determination R?= 0.9774, coefficient of variation of 3.04%, and a root
mean square error (RMSE) of 4,383.26. Because of the range of values of each random
variable in the Monte Carlo simulation, we are able to generate and use a single response

surface model which isvalid for all three combinations of cylinder length and diameter.
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In spite of high R? and small RMSE, the buckling force predictions from the
response surface model were compared with those found directly from the shell analysis
code. The maximum difference in the buckling loads was found to be approximately 3%,

which isalmost equal to the COV of the response surface equation.

Weight Minimization
The weight minimization problem isformulated as
Min. W(X,), i=1,2,...,22
St

:B > Bmin

My, < Hy, <;1)“<j , ] =1,2,..., NDV
where (U, Uy, Hy,,, ) Tepresent the mean values of a subset of random variables

treated as design variables. Since the cylinder is made of a constant density material and
the specific weight was not treated as a random variable in our analysis, we decided to
use the material volume as a surrogate for weight.

In optimizing the cylinder, the mean thickness of individual plies were considered
as the design variables with the corresponding standard deviations fixed. The shell
laminate is assumed to be symmetric, which requires only the thickness of plies on one
side of the plane of symmetry to be treated as design variables. The materia properties
and ply orientation angles were treated as random variables with specific means and
standard deviations. The cylinder length and diameter were alowed to have three

specific mean values.



46

To perform the design optimization studies, the reliability anaysis code was
coupled with the DOT® optimization program where the response surface model was
used to obtain the buckling response. The optimization solutions are based on the method
of sequential quadratic programming. The lower and upper bounds on ply thickness are
chosen to be 0.0026 in. and 0.007 in. , respectively.

We examined three different values for S, (i.e, 3.09, 3.72, and 4.26). The

values and their corresponding reliability are shown in Table 4.2. The optimization
results are shown in Table 4.3. The values of the mean axial and mean buckling loads are

aso shownin Table 4.3.

Table4.2 [ vauesand corresponding reliabilities

B | Reiability
309 | 0.999
372 | 0.9999

4.26 0.99999




Table 4.3 Optimization results for weight minimization
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Mean Vaues
Design Exp. Parameter? B.., =3.09 B, =3.72 B.., =4.26
P, Ib 143690 143690 143690
I5¢r ,Ib 162631.018 166741.485 169817.556
V,in® 51.858 52.585 53.213
t,, in (45) 0.0066929 0.0069999 0.0067245
t,, in (-45) 0.0070000 0.0070000 0.0070000
ts, in (90) 0.0069976 0.0062224 0.0067173
1 t,, in (90) 0.0050790 0.0056137 0.0062750
ts, in (90) 0.0026000 0.0026000 0.0026004
t, in (90) 0.0070000 0.0070000 0.0070000
t;, in (-45) 0.0026000 0.0026000 0.0026000
tg, in (45) 0.0031286 0.0036362 0.0032509
D, in 20.0 20.0 20.0
L,in 10.0 10.0 10.0
P, Ib 143690 143690 143690
I5Cr ,Ib 161796.307 165441.246 168760.053
V,in® 58.448 59.251 59.940
ty, in (45) 0.0050275 0.0049061 0.0048684
t,, in (-45) 0.0055967 0.0055715 0.0056314
ts, in (90) 0.0031384 0.0030434 0.0031605
2 t,, in (90) 0.0049807 0.0052309 0.0055585
ts, in (90) 0.0026000 0.0026000 0.0026000
t, in (90) 0.0064662 0.0070000 0.0070000
t;, in (-45) 0.0070000 0.0070000 0.0070000
tg, in (45) 0.0063088 0.0063282 0.0063427
D, in 15.0 15.0 15.0
L,in 15.0 15.0 15.0
P, Ib 143690 143690 143690
I5¢r ,Ib 162085.471 165976.979 169573.945
V,in® 54.572 55.335 56.035
t,, in (45) 0.0056549 0.0056584 0.0058299
t,, in (-45) 0.0049778 0.0050325 0.0047818
ts, in (90) 0.0029505 0.0030163 0.0032725
3 t,, in (90) 0.0059979 0.0063456 0.0069087
ts, in (90) 0.0026000 0.0026000 0.0026000
te, in (90) 0.0068751 0.0070000 0.0068083
t;, in (-45) 0.0070000 0.0070000 0.0070000
ts, in (45) 0.0070000 0.0070000 0.0069994
D, in 10.0 10.0 10.0
L,in 20.0 20.0 20.0

2 Ply angles shown in parentheses
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In design experiments 2 and 3, the thickness of middle plies (layers 6, 7 and 8) are
near the upper bound, while the 5" layer arrived close to the lower bounds. In design
experiment 1, layers 1, 2 and 6 are near the upper bound, while layers 5 and 7 are close to
the lower bound. It is observed that a substantial increase in reliability can be obtained
with aminimal increase in wall thickness and materia volume.

The variations in the optimum mean buckling load and cylinder volume are
shown in Fig. 4.1. For al level of reliability index, the cylinder in design experiment 3 is
seen to be stronger than those in the other two design experiments. Comparing the
optimal design for design experiment 1 with that of 2, we see that even though the
cylinder in design experiment 1 is lighter than that in 2, it has a dightly higher buckling
load. The variations in length and diameter indicate that the shorter cylinder with larger

diameter to be stronger than the longer cylinder with smaller diameter.



Volume (in*3)

Mean Buckling Load (Ib)

(b)
B,=3.09, B,=372 [,=4.26

Figure 4.1 Variation of mean buckling load (a) and material volume (b) as a function of
reliability index
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Reliability Maximization
The reliability maximization problem is formulated as
Max. B(X)), i=12,...,22
S.t.
V<V,

My, < Hy, <;1)“<j , ] =1,2,..., NDV

where V is the material volume of the cylinder. The results of this optimization are shown
in Table 4.4. In each design experiment, the cylinder reliability is maximized based on
two different limits on volume. This is done to examine the effect of volume constraint
on reliability index.

From the results we see a severa-cubic inch increase in volume results in a
considerable increase in reliability index. The sensitivity of reliability index to volumeis
clearly evident in these results. It is interesting to note that in this optimization case
design experiment 4 results in a lighter and stronger cylinder than the other two. By
alowing the volume in design experiment 4 to increase to 52.5 in°, the cylinder has a
buckling load of 166,849 |b whereas design experiment 5 with a volume constraint of
58.5 in® resulted in a buckling load of 162,834 Ib, and experiment 6 with a volume

constraint of 58.5 in®resulted in a buckling load of only 162,077 Ib.



Table 4.4 Optimization results for reliability maximization

Design Mean Values
Parameter
Exp Low High
B 3.803 6.326
P, Ib 143690 143690
I5Cr ,Ib 166848.990 184339.019
V e IM 52.5 55.5
t,, in (45) 0.0066983 0.0069649
t,, in (-45) 0.0070000 0.0070000
4 ts, in (90) 0.0060949 0.0070000
t,, in (90) 0.0062424 0.0070000
ts, in (90) 0.0026000 0.0026000
te, in (90) 0.0070000 0.0070000
t;, in (-45) 0.0026000 0.0028334
tg, in (45) 0.0035065 0.0037972
D,in 20.0 20.0
L,in 10.0 10.0
B 3.280 6.864
P, Ib 143690 143690
If’Cr .Ib 162834.180 185807.662
V e IM 58.5 63.0
t,, in (45) 0.0051650 0.0046351
t,, in (-45) 0.0054642 0.0062041
5 ts, in (90) 0.0029478 0.0038056
t,, in (90) 0.0052679 0.0069806
ts, in (90) 0.0026067 0.0026000
t, in (90) 0.0066962 0.0069998
t;, in (-45) 0.0069944 0.0070000
ts, in (45) 0.0061512 0.0063579
D,in 15.0 15.0
L,in 15.0 15.0
B 3.103 6.578
P, Ib 143690 143690
If’Cr .Ib 162077.777 185119.581
V e iN° 54.5 59.0
t,, in (45) 0.0054847 0.0049459
t,, in (-45) 0.0049751 0.0050188
6 ts, in (90) 0.0030721 0.0061180
t,, in (90) 0.0059383 0.0069813
ts, in (90) 0.0026000 0.0026113
t, in (90) 0.0070000 0.0069713
t;, in (-45) 0.0070000 0.0069995
ts, in (45) 0.0070000 0.0070000
D,in 10.0 10.0
L,in 20.0 20.0
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L ocal Response Surface Technique

In the previous section, the application of a single global response surface
equation for buckling load estimation in both reliability analysis and design optimization
was described. Although that technique resulted in a substantial computational savings
over the use of exact analysis at every iteration, it till required 3000 Monte Carlo
simulation cycles for development of an accurate response surface model. The technique
explored in this section seeks to reduce that computational burden even further with
minimal loss of accuracy in the optimization results.

The procedure works as follows. Instead of using a single nonlinear global
response model that is valid over the entire design space, a series of linear response
surface models was used with each being accurate over a localized region of the design
gpace. During each optimization cycle, the search for a better design is limited to the
region where the local response surface model is valid. At the completion of each
optimization cycle, a new response model is generated for use in the next optimization
cycle. The procedure is repeated until the objective function converges. Figure 4.2
illustrates the search technique over a simple two-dimensiona space. The arrow in each
block indicates the initial and final points within each local optimization.

The computational efficiency of this technique is due to its requirement for much
fewer Monte Carlo simulation cycles. The local response models are generated based on
the n+1 point integration simulations, where n is the number of random variables
present in the response surface model. Since we are using response observations for only
n+1 experiments, we can only generate a linear response surface model. This limitation

should not pose a problem as each model is used over a small sub-region of the design
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gpace. The selection of random vaue for each variable is based on the procedure

described in Appendix C.

/ Boundary of entire
2 4 design space

Design Space

Boundary of local regression model
and optimization

Figure 4.2 lllustration of optimization based on multiple local regression models

The optimization scheme based on the sequential application of local response

models is described by the flowchart in Fig. 4.3.



Initial design

v

Conduct Monte Carlo

v

Construct alocal regression

model based on the simulation
v Update the design

Optimize the design the
local regression model

Objective No

function

Sto

Figure 4.3 Flow chart of optimization based on multiple local regression models

The optimization results based on this technique are listed in Table 4.5 and Figure

4.4,
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Table 4.5 Multiple local optimization results for weight minimization with reliability

constraint of ,;, =3.09
Global RS technique Local RStechnique I:_)ifference D_ifference
= it | Fna tmf:(lﬂ]r) Intid | Final it " f?Q/?)Ner i rrlwgzﬁ)
1 56.85 55.04 350 56.85 56.62 16 2.8 334
2 56.85 59.74 350 56.85 58.83 16 1.54 334
3 56.85 55.80 350 34.03 55.41 19 0.7 331
4 56.85 55.80 350 83.20 55.08 19 1.3 331
5 56.85 58.45 350 34.03 57.73 21 1.2 329
6 56.85 58.45 350 83.20 57.60 19 15 331

Case 1: All COV=1% except COVp = 3.04%
Case 2 COVy =319%, COV. =4.26%, COV,=5%, COV; =516%,

COV, =3.04, COV, =5% and all other COV = 1%
Case 3, 4: All COV=1%
Case 5, 6: COVEll =3.19%, COVE22 =4.26%, COV, =5%, COVGlz =5.16%,

COV, =3.04 and al other COV = 1%
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The optimization generated from global response model optimization technique
and multiple local response models technique have little difference, while the latter takes
much less time. Thus apparently the multiple local response models technique is more
efficient than the global model technique.

The plots also show the effect of the coefficient of variation on the optimization
results. When the random variables have larger coefficients of variations, which increase
the probability of structure failure, the ply thicknesses tend to increase in order to
maintain the minimum reliability constraint, thus resulting the increase in shell volume.
This trend can be seen in Figure 4.3, in which Case 2, Case 5 and Case 6 have larger
COV'sthan Case 1, Case 3 and Case 4, respectively.

The optimization was started with the initial values of the design variables being
at the lower bounds in Case 3 and Case 5, and at the upper bounds in Case 4 and Case 6.
Figure 4.3(b) shows that the same objective function values are reached no matter where

the optimization was begun.



Chapter V

SUMMARY AND CONCLUSIONS

Reliability Analysis of Anisotropic Circular Cylinders

The reliability of anisotropic circular cylinders with axia buckling as the mode of
failure was investigated. A large number of Monte Carlo simulations cycles were
performed and the RSREG procedure of statistics software SAS was used to construct the
full quadratic response surface model for estimation of axial buckling force. The
response surface equation was used for calculation of component reliability measured in
terms of Hasofer-Lind reliability index. The probability of failure was also calculated
using the Monte Carlo simulation method, which is shown to be very close to that from
the Hasofer-Lind reliability index.

The response surface model was also used to investigate sensitivity. The
deterministic sensitivity derivatives of the limit state function, defining the surface
separating the safe from the failure region, with respect to material properties, geometric
parameters, and applied load were studied. For the four anisotropic cylinders, ply pattern,
applied load, Young's modulus E;, and cylinder diameter, were found to have the
greatest influence on the limit state function. The probabilistic sensitivities of the

reliability index [ with respect to the mean and standard deviation of material
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properties, geometric parameters, and applied load were calculated. These results also

indicate Young's modulus E;; and diameter have the greatest influence on reliability
index B. For the cylinder made only of +45 plies, G, is aso seen to have a
large influence on B. Although the influence of each ply thickness was found to be
small, the effect of total thickness on buckling load is large, as expected.

As for the influence of distribution type and coefficient of variation of applied
load on reliability index (3, it was found that the distribution type has little effect on 3
while the influence of coefficient of variation is more significant. The probability of

failure increases as the coefficient of variation is increased.

Reliability-Based Optimization of Anisotropic Circular Cylinders

Two design optimization cases were investigated. In the first case, the cylinder
weight is minimized subject to a reliability constraint; in the second case, the cylinder
reliability is maximized subject to a weight/volume constraint.  In both cases three
different combinations of cylinder diameter and length were examined. The mean
thickness of each ply in one side of a symmetric laminate was treated as a design variable
for atotal of eight variables. For the weight minimization problem, three different limits
for reliability index were considered. Results showed that for cylinders with different
diameters and lengths, the optimum thickness of each layer varies. It was observed that a
small increase in wall thickness and material volume could result in a substantial increase

in reliability index. For the reliability maximization problem, two different limits on
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maximum material volume were examined. The results also showed that a small increase
in material volume could lead to abig increase in reliability.

The optimization technique based on a single globa nonlinear response surface
model of axial buckling force was compared with one based on sequential application of
local response surface models. Development of a globally accurate model required the
use of afull quadratic equation, which required 3000 Monte Carlo simulation cycles for
accurate estimation of its unknown coefficients. In contrast, each linear response model
in the local response surface technique required 23 Monte Carlo simulation cycles for a
total of approximately 160 simulations. The weight minimization problem was repeated.
The results from global and local response surface techniques were found to be very close

while the latter technique took afraction of time required by the global approach.
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APPENDIX A

MONTE CARLO SIMULATION

64



65

Monte Carlo (MC) methods are stochastic techniques--meaning they are based on
the use of random numbers and probability statistics to investigate problems. MC
methods have been used widely from economics to nuclear physics to regulating the flow
of traffic. Generally speaking, to call something a "Monte Carlo" experiment, al you
need to do is use random numbers to examine some problem.

The procedure for finding the random values for each experiment is described as
follows.

An equation to generate random numbers with a normal distribution can be found
in the "Reliability Engineering Handbook®"

X =[+/—2Inr, cos(2m,)] 0+ A1)
x, =[/=2Inr, sin(2m,)] o + '
Given two uniform random numbers r,,r,(0<r,r, <1), two normally distributed
random numbers with amean u and a standard deviation o will be generated using the

above equation. The uniform random numbers r, and r, could be achieved from a
Fortran library routine "r = RAN(I)", where | isan integer asan input and r isareal
number as the output.

For example, to get a series of random ply angles with mean u and standard
deviation o, we choose a pair of uniform random numbers, by applying the above
equation we get two ply angles which can be used for two simulations. Then we choose
another pair of r, and r,, calculate two ply angles and use them for another two
simulations. Use the same method to generate the other ply angles, ply thickness,

geometry parameters and material properties.
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The procedure for calculation of reliability index S isdescribed below.
. Assume an initial value for the design point. It is common to start with the mean
values of the basic random variables. The design point in the reduced coordinates

should then be computed using

X_,D - Xi _Ux,
Oy

fori=12,...,n (B.2)

. Evaluate the directional cosines at the failure point. The partial derivatives that are

needed for computing the directional cosines can be obtained as

529 5 =599 9% %% o, fori=12,...,n (B.2)
OXi0, 00X 0X{, [0 0X,

. Solve the following equation for theroot 3:

ok, a0, B).(1y, ~a504,B).++ (1, ~a7 o BH=0 (83)
. Using the B obtained from step 3, evaluate a new design point using the following
equation:

X\'=py —dlo, B (B.4)
. Repeat steps 1 to 4 until convergence of B is obtained.

The flowchart of this procedure is shownin Fig. B.1.



Guess the coordinates of MPP
(Xl » X2, ...Xn) = (l,lxl ’HXZv"" l,lxn)

I

Transform X into reduced coordinates
xi’* :M; 1=12,...,n
Ox

68

( STOP)

No

v

Calculate the coordinate direction angles

Ogg O

. baxH

a; = , 1=1,2,...,n
N Ogg OF
2,5t

where

|B = Boig|< TOL 2

Update the coordinates of MPP
% =Hy, —Qjox.B, 1=12..n

Solve for 3 by finding the roots of the limit state function equation

QJ[@Xl —azaxlﬁ)élXZ - a;aXZB)..., @Xn ~a,0y, ,B]: 0

Figure B.1 Flowchart of calculation of safety index
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The n+1 point integration method is described as follows. All normal random
variables are transformed from the standard normal space to general variable space. For
each simulation, the n general random variables are defined according to the equation

X =y +Z,0, j=12..,n (C.1)

where the point values to be used for random variablesin the first simulation are
Z,;=(23,2,52,) =(¥n,0,0,--,0) (C2)
which means that in the first ssimulation all random variables are at their mean values

except the first random variable which is set to
X =y, +/noy (C3)

In subsequent simulations, the point values are determined as follows

O ff (0330 D o, O
ZZ,j - ﬁJ%’ f) O) 01 ) OE (C.4)
O _[(+) [0edm-2 , L
ZS,J‘ - EJ%’ \/n(n_l) ’\/ (n _1) 10) O) 105 (C.5)

01 [(n+) (n+1) (n+1)(n-3) 0
Z‘”'ﬁ#’ R et

Zn-=g-\ﬁ,-\/ (n+1) ,_\/ (n+1) \/ (0+) g0 [0DE oo

TTHAR \n-)" \(n-D(n-2) '\ (n-2)(n -3 2 E

Zn+1 j = g_\/i’ _\/ (n+1) , _\/ (n +1) ,\/ (n +1) ’”'10, 0,--', — —(n +1) D(Cg)
TN (=D’ \(n-D(n-2)'{(n-2(n -3) 2 E
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