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The reliability analysis and reliability-based optimization of laminated circular 

cylinders under axial buckling instability are studied.  Structural reliability is measured in 

terms of Hasofer-Lind reliability index.  The response surface models are used in both the 

calculation of the reliability index and the reliability-based optimization.  In the reliability 

analysis, both deterministic and probabilistic sensitivity factors are investigated; the 

results show that the reliability index is most sensitive to the applied load and Young's 

modulus of the material.  Two cases are considered in the optimization study.  In the first 

case, the cylinder weight is minimized subject to a reliability constraint whereas in the 

second case, cylinder reliability is maximized subject to a weight constraint.  In addition, 

two different optimization techniques are studied.  In the first technique, a global 

response surface model of the buckling response based on 3000 Monte Carlo simulations 

is used for the design optimization whereas in the second technique, multiple local 
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regression models, with each based on approximately 20 simulations, are used in 

sequential search of an optimum design. An optimum design is found.  The results based 

on sequential application of multiple local regression models are close to those from 

global optimization while the former is much more efficient in terms of computational 

cost.
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CHAPTER I 

 INTRODUCTION 

 

Reliability Engineering 

The study of reliability engineering is developing very rapidly worldwide.  All 

areas from the electronics industry to the war industry, space aviation, and manufacture 

of mechanical and electrical products have attached great importance to it and carried out 

massive studies in this discipline. 

Traditionally, structural design relies on deterministic analysis.  Suitable 

dimensions, material properties, and loads are assumed, and an analysis is then performed 

to provide a more or less detailed description of the structure.  However, fluctuations of 

the loads, variability of the material properties, and uncertainties regarding the analytical 

models all contribute to a generally small probability that the structure does not perform 

as intended.  In response to the problem, methods have been developed to deal with the 

random nature of loads and material properties, and more recently, a general framework 

for comparing and combining these statistical effects has emerged.  The methods have 

been used in application to structural design and reassessment of the safety of existing 

structures. 

The question of reliability is important because of the ever-increasing demands on 

the increasing complexity of structures.  These increased complexities may provide more 
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chances for the whole system to become faulty because of the failure of any related part, 

and the failure or fault in the whole system could threaten production, cause economic 

losses, and even jeopardize personal safety.  In addition, the application of new materials 

or the adoption of new techniques may result in structures that are neither reliable nor 

safe.  Furthermore, the high-performance demands and operation conditions of 

equipments can lead to mistakes in control and management.  An optimal solution to 

these problems can not be found by deterministic means alone.  The comprehensive 

engineering technology of reliability engineering has been developed to tackle these 

questions. 

For a understanding of the concept of reliability, a strength-stress model of a 

component of a structure can serve as an example.  To predict reliability of this 

component for which a failure occurs when the stress exceeds the strength, the nature of 

the stress and strength random variables must be known.  Stress is used to indicate any 

component or equipment that tends to induce failure, while strength indicates any 

component or equipment that resists failure.  Let the density function for the stress(es) be 

denoted by sf  and that for strength ( )r  by sf  as shown in Figure 1.1.  The reliability is 

defined as the probability that the stress will not exceed the strength.  The reliability is  

 ( ) ( 0)R P r s P r s= > = − >   (1.1) 

where P  is the probability.  The shaded region in Figure 1.1 is the interference region, 

which indicates a finite probability of failure.  The magnitude of the failure probability is 

a function of the degree of overlap of the two distributions.  The greater the shaded area, 

the greater the probability of failure. 
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Figure 1.1 Stress, ( )sf s  and strength, ( )rf r   distributions with interference region 

 

Reliability-Based Optimization 

In the structural analysis of engineering design, there exists uncertainties in 

loading, material properties, geometry, and environmental conditions.  These 

uncertainties should be taken into consideration carefully in order to ensure that the 

design performs its function within the desired confidence limit without failure.  In robust 

design, it is important not only to achieve design objectives but also to maintain the 

robustness of design feasibility under the effects of variations caused by uncertainties. 

In reliability-based plastic/elastic optimal design of mechanical structures, the 

problem is to find an optimal design point that is robust with respect to random variations 

of the structural parameters. Considering the (expected) construction costs, weight, 

volume, etc., denoted as C=C(X), and the probability of failure of the structure, this goal 

can be achieved by solving an optimization problem of the following type:  
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Problem Type A  

                                     min ( )C X  

                                     s.t.  

             ( ) 1     (fp X R R≤ − =given reliability) 

                                              0X D∈  

 

Problem Type B  

                                     min ( )fp X  

                                     s.t.  

                                 max( )     C X C≤   

                                 0X D∈  

where 0D  is a given design space.   

In solving problems of Type A or B or a certain combination of Type A and B, 

the main difficulty is the computation of the probability function and its derivatives. 

Moreover, the expected cost functions C(X) and its derivatives must be computed. 

 

Scope of the Present Study 

The first part of this study is focused on the reliability analysis of laminated 

circular cylinders under axial buckling instability.  Structural reliability is measured in 

terms of the Hasofer-Lind reliability index, which is based on a nonlinear response 

surface model of the buckling load.  The effects of variations in material properties, 

geometric parameters, and applied load on reliability index are investigated using both 
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deterministic and probabilistic sensitivity factors.  To assess the effect of anisotropy on 

buckling reliability, four discrete ply patterns are considered. 

The second part of this study examines the reliability-based optimization of 

laminated circular cylinders under axial compression. Two cases are considered.  In the 

first case, the cylinder weight is minimized subject to a minimum reliability constraint 

whereas in the second case the cylinder reliability is maximized subject to a maximum 

weight constraint. Results of weight minimization based on two different optimization 

techniques are compared. In the first technique, the buckling response of the cylinder 

over the entire design space is modeled by a single global nonlinear algebraic model 

derived from a large-scale Monte Carlo simulation. In the second technique, a point 

integration scheme is used to obtain multiple local linear response surface equations, 

using a much smaller data set, that are accurate over a small region of the design space.  

The results are found to be close, while the multiple local regression model technique is 

much more efficient than the global response surface technique.   

 

Literature Review 

 Reliability Analysis 

The area of structural reliability has grown at a tremendous rate in the  past 

decades.  Many methods have been proposed to investigate reliability, considering the 

type of problem, the parameters involved, and the uncertainty associated with these 

parameters.  Uncertainties are typically modeled in terms of the mean (the central 

tendency), the variance (the dispersion about the mean), and the distribution.  Various 

reliability estimation techniques use part or all of this information in different ways.  
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These variations give a particular method its own specific advantages and limitations.  

Two broad families of analysis methods for conducting the investigation have dominated 

the reliability and uncertainty analysis literature: analytical techniques and random 

sampling methods. 

 

Analytical Techniques 

This family consists of such techniques proposed by Hasofer and Lind (1974), 

Hohenbichler and Rackwitz (1987) among many others.  All of these methods can be 

grouped into two types, namely, first- and second-order reliability methods (FORM and 

SORM). For FORM, the random variables are characterized by their first and second 

moments.  Truncation of the Taylor's series expansion of the function forms the basis of 

this method. Higher moments, which might describe the skewness and kurtosis of the 

distribution, are ignored.  For SORM, a higher order approximation for the failure 

probability computation is used because of the high nonlinearity of some limit state 

functions. 

Shao and Murotsu1 developed an approximate limit-state function by using a 

neural network.  An "active learning algorithm" is proposed to enable the network to 

determine important failure regions by itself and also to do further learning at those 

regions to achieve a good fitness with the real structural state there. 

Gucher and Bourgund2 used an adaptive interpolation scheme to represent the 

system behavior by a response surface model.  Subsequently, the response surface is 

utilized in conjunction with advanced Monte Carlo simulation techniques (importance 

sampling) to obtain the desired reliability estimates.  Liu and Moses3 used a sequential 
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response surface method together with Monte Carlo Importance Sampling to calculate the 

reliability.  Based on their method, they developed a reliability analysis program RSM for 

aircraft structural systems. 

Millwater and Wu4 proposed a global/local method to reduce the computational 

requirements of probabilistic structural analysis.  A coarser global model is used for most 

of the computations with a more refined local model used only at key probabilistic 

conditions.  The global model is used to establish the cumulative distribution function 

(CDF) and the Most Probable Point (MPP). The local model then used the predicted MPP 

to adjust the CDF value. 

 

Random Sampling Methods 

This family of methods have been dominated by traditional Monte Carlo methods 

as well as numerous variations such as stratified sampling (e.g. Latin Hypercube 

Sampling), importance sampling and adaptive importance sampling. 

Monte Carlo methods have a long history in reliability and uncertainty analysis as 

function integrators. The basic concept of Monte Carlo integration is to replace a 

continuous average by a discrete approximation for that average.  However, Monte Carlo 

simulation or Latin Hypercube Sampling often require prohibitively large computational 

effort although the number of simulations is independent of the number of basic 

variables.  Thus, in reliability and risk assessment, several more efficient and accurate 

calculation algorithms for analyzing complicated models have been proposed. 

Wu5 proposed an adaptive importance sampling (AIS) method that can be used to 

compute component and system reliability and reliability sensitivities.  The AIS approach 
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uses a sampling density that is proportional to the joint probability density function of the 

random variables.  Starting from an initial approximate failure domain, sampling 

proceeds adaptively and incrementally to reach a sampling domain that is slightly greater 

than the failure domain to minimize oversampling in the safe region. 

Torng, et. al6 proposed a robust importance sampling method (RISM) to calculate 

the reliability or its converse, the probability of failure.  RISM first uses a tracking 

scheme to locate the failure domain.  Next, an efficient adaptive sampling scheme is used 

to calculate the reliability with minimum computational effort. 

Bucher7 suggested an iterative Monte Carlo simulation procedure, which utilizes 

results from simulation to adapt the importance sampling density.  He also reduced the 

statistical error of the estimated failure probability.  His method is especially suitable for 

system reliability analysis since multiple failure modes need not be treated separately. 

 

Computer Programs for Reliability Computation 

Numerous computer programs have been developed by researchers to implement 

the FORM/SORM algorithms. 

NESSUS(Numerical Evaluation of Stochastic Structures Under Stress), developed 

at the Southwest Research Institute8 combines probabilistic analysis with a general-

purpose finite element/boundary element code.  Structural analysis is performed using the 

displacement method, the mixed-iterative formulation or the boundary element method, 

and the iterative perturbation is used for sensitivity analysis. 

PROBAN (PROBability ANalysis)9 was developed at Det Norske Veritas (Hovik, 

Norway).  It was designed to be a general probabilistic analysis tool.  PROBAN is 
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capable of estimating the probability of failure using the FORM or SORM.  The 

approximate FORM/SORM results can be updated through importance sampling.  The 

probability of general events can be computed by Monte Carlo simulation and directional 

sampling. 

CALREL(CAL-RELiability)10 is a general-purpose structural reliability analysis 

program designed to compute probability integrals.  It incorporates four general 

techniques for computing the probability of failure: (1) FORM, (2) SORM, (3) directional 

simulation with exact or approximate surfaces, and (4) Monte Carlo simulation. 

Khalessi, et. al11 developed FEBREL (Finite Element-Based RELiability) as a 

general-purpose, probabilistic, finite element computer program at Rockwell 

International Corporation's Space System Division.  They use the ANSYS general-

purpose finite element computer program to provide the necessary computational 

framework for analyzing complex structures, while the FEBREL reliability computer 

program provides the basis for modeling, analysis of uncertainties, and computation of 

probabilities.    

Estes and Frangopol12 developed RELSYS (RELiability of SYStems) to compute 

the system reliability of structures modeled as a series-parallel combination of its 

components. 

 

Reliability-Based Optimization 

Reliability-Based Optimization in Structural Engineering 

In deterministic structural optimization problems, the objective function is usually 

the volume or the weight of the structure and the constraints are related to code 
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requirements for stresses or displacements.  A large number of numerical procedures 

have been developed to solve this type of problems.  Most of the numerical algorithms 

used in deterministic structural optimization are based on sequential linear programming 

and dual methods.  In reliability-based structural optimization, the total expected costs 

related to the structure such as weight can be used as the objective function.  The 

constraints are reliability requirements connected with the possible failure modes of the 

structure. 

Nikolaidis and Burdisso13 used the concept of Hasofer and  Lind to approximate 

the limit state function about the most probable point, and optimized a simplified aircraft 

wing model for system reliability.  Torng and Yang14 optimized a structure using an 

advanced reliability based optimization technique, and the reliability constraint was 

approximated linearly.  Using the efficient safety index computation developed  by 

Wang, et. al15, they optimized frame and plate structures under the reliability constraint.  

Multipoint split approximations were used to approximate the reliability constraint.  

Chandu and Grandhi16 integrated the general purpose structural reliability analysis 

program NESSUS with mathematical optimization capabilities for achieving optimal 

designs.  They developed RELOPT (RELiability based structural OPTimization), an 

automated procedure for design optimization by integrating reliability analysis, 

sensitivity analysis, function approximations and data base management.  Hendawi and 

Frangopol17 presented a practical optimization approach to the design of both unstiffened 

and stiffened hybrid composite plate girders for highway bridges.   

Tu, et. al18 proposed a new approach called performance measure approach 

(PMA) in the reliability-based design optimization.  They found the conventional 



www.manaraa.com

 

 

11 

reliability index approach (RIA) and PMA are consistent in prescribing the probabilistic 

constraint.  PMA is inherently robust and more efficient in evaluating inactive 

probabilistic constraints, while RIA is more efficient for violated probabilistic 

constraints. 

Yang and Ma19 developed an optimum design methodology based on reliability 

for a composite structural system.  A two-level optimization is adopted.  In system level 

optimization the structural total weight is taken as the design objective, and the 

requirement of system reliability is the constraint. In member level optimization the 

laminate reliability is taken as the design objective  and keeping the weight or thickness 

of laminate constant is the constraint. 

 

Response surface model in optimization 

Sometimes the computation of optimization related structural analysis is very 

time-consuming, thus response surface models are used in optimization procedure.  

Response surface methodology (RSM) is a collection of mathematical and statistical 

techniques for solving problems in which the goal is to optimize the response Y of a 

system or process that is influenced by n independent variables X1, X2, …, Xn.   

Liaw and DeVries20 developed a reliability-based optimal design process by 

integrating reliability and variability analysis with optimization design processes using 

the response surface approach.  They used the response surfaces for 'what-if' studies, 

optimization, robust design, and trade-off studies.  Ragon and Haftka21 used the response 

surface model for weight optimization of a composite stiffened panel.  The response 

surface approximation is accomplished using the panel analysis/design code PASCO and 
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using response surface modeling techniques.  Using a finite number of PASCO 

analysis/design computations, the optimal panel weight function is approximated by a 

quadratic polynomial over appropriate ranges of the loading and stiffness parameters.  

Sevant, et. al22 proposed a partial differential equation (PDE) method to optimize the 

design of flying wings.  They used response surface methodology to construct smooth 

analytic approximations of the noisy lift data.  The combination of the PDE method RSM 

results in a design approach that is both efficient and robust. 
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Chapter II   

RESPONSE SURFACE APPROXIMATION TECHNIQUE 

 

Introduction 

A response surface model is a algebraic model used to simulate the response of a 

system.  The response surface model is developed using regression analysis.  The input 

variables are called regressors or independent variables and the output is often called the 

response or dependent variable. To construct a response model, one needs to perform a 

number of simulations, then fit a response surface model using the least squares method 

based on these simulation results. After forming the response surface model, one can 

predict the system response for random values of independent variables within the 

domain of validity of the model. 

The response surface technique has been used in both reliability analysis and 

structural optimization by other authors.  In this study, this technique is used for a more 

efficient prediction of buckling response for the structural model.  In performing 

reliability or optimization analysis, as many as several hundred or thousand buckling 

responses based on different values of random variables may be necessary. The shell 

analysis code used for buckling analysis takes approximately 4 minutes (Sun 350) for a 

single buckling calculation. Hence, the time spent on one reliability analysis or 

optimization run could easily exceed one day. When the response surface model is used 
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in lieu of the shell buckling analysis code, the reliability analysis or optimization takes a 

small fraction of that time without any significant loss in accuracy of predictions.  

 

Response Surface Model/Linear Response Model 

For a demonstration of the response surface and linear regression model, a simple 

example is given here.  Suppose a system has two input variables 1X  and 2X , and a 

single output  or response Y .  The response variable Y  is influenced by the values of the 

two input variables.  We want to build a response surface model to simulate the actual 

response.  The quadratic response surface model for this procedure is written as  

 215
2

24
2

1322110
ˆˆˆˆˆˆˆ XXXXXXY ββββββ +++++=  (2.1) 

where �,ˆ,ˆ
10 ββ  and 5β̂ are unknown constant coefficients.  For a full quadratic model 

with n  independent variables, there will be a total of 
2 3 2

2

n n+ +
 unknown coefficients in 

the model. 

 In a linear regression model for response variable Y in terms of 1X  and 2X , we 

can write  

 22110
ˆˆˆˆ XXY βββ ++=  (2.2) 

where 10
ˆ,ˆ ββ  and 2β̂  are the three coefficients we need to find.  

Suppose for the response surface model of (2.1) we have a set of n  data points, 

 

1 11 12

2 21 22

1 2

, ,

, ,

, ,n n n

Y X X

Y X X

Y X X

�
 (2.3) 
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The method of least squares is used to find the estimated values of 510
ˆ,,ˆ,ˆ βββ "  in 

(2.1).  That is, choose 510
ˆ,,ˆ,ˆ βββ "  to minimize the sum of squares of the residuals  

 ∑
=

−=
n

i
ii YYsSS

1

2)ˆ()(Re  (2.4) 

Many statistical software packages may be used for creation of the response surface 

models.  SAS23 was used in this study.  The RSREG procedure in SAS is used for finding 

the coefficients in the full quadratic response surface models,  and the REG procedure is 

used to do the same for linear regression models. 

 

Candidate Designs/Simulations 

To construct the response surface model, a number of candidate designs, 

including the input variables and the output are needed.  We will use these data to fit the 

least square curve, i.e., the response surface.  A series of random values for each variable 

are generated within specified limits for lower and upper bounds.  These bounds define 

the region of validity for the response surface model. 

For the reliability analysis and optimization using a single global buckling 

response model, a large number of Monte Carlo simulations were performed.  In contrast, 

when using the sequential local response technique, the 1+n  integration technique24 (see 

Appendix C) was used, which requires only 1+n  candidate simulations in constructing a 

locally-accurate response model, where n  is the number of regressors.   
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Validation of Models 

Before using a regression model, it is important to keep in mind that the model 

can only be used within its domain of validity.  This domain is based on the limits 

specified by the lower and upper bounds on each random variable in performing the 

simulations. Besides the limits on the independent variables, there are several statistics 

that can be used to check the validity of the response surface model or linear regression 

model. 

1. 2R  

2R  is defined as 

 2 SSR
R

SSTO
=  (2.11) 

where SSR is the regression sum of squares, i.e., the measure of the variation of the fitted 

regression values around the mean; SSTO is the total sum of squares, i.e., the measure of 

the variation of the observed values around the mean.  2R  measures the proportion of the 

variation of the candidate responses around the mean that is explained by the fitted 

regression model.  The closer 2R  is to 1, the greater the degree of association between 

X's and Y.  However, 2R  alone may not be a good measure of goodness-of-fit. 

2. Root MSE 

Many authors use the RMSE as a criterion for judging the accuracy of the model. 

The root mean square error (RMSE) is defined as 

 ∑
=

−
−

=
n

i
ii YY

pN
RMSE

1

2)ˆ(
)(

1  (2.12) 
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where p  is the number of parameters in the response surface or linear regression model, 

n  is the number of candidate data points, iY  are the candidate response values, and iŶ  are 

the regression response values.  A small RMSE means a good response surface or linear 

regression model. 

 3. t-test 

 This method is not often used in engineering because it is somewhat more 

complicated than the computation of RMSE and 2R . 

 First one must obtain an independent set of data (not the candidate data used to 

build the response surface).  Let the independent set of data be defined as 

 1 2, , , ,i i i ipY X X X∗ ∗ ∗ ∗
�    i=1, … , m 

Then, put ∗∗
ipi XX �1  into the regression model to get 

 ∗∗∗ +++= ippii XXY βββ ˆˆˆˆ
110 �  (2.13) 

The prediction error at each point is estimated as 

 iii YY −= ∗ˆδ  (2.14) 

Where the average 
1

1 m

i i
im

δ δ
=

= ∑  is a measure of the bias in using the model to predict *
iY .  

To test for significant bias, test 0 : 0H δµ =  vs 1 : 0H δµ ≠ .  Use the t test: 

 
2 ( ) /

t
s m

δ
δ

=  (2.15) 

Reject 0H  if 1, 2| | nt t α−> .  Rejecting 0H  indicates significant bias. 
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Chapter III  

RELIABILITY ANALYSIS OF COMPOSITE CYLINDRICAL 

SHELLS UNDER AXIAL COMPRESSION 

 

Deterministic Buckling Analysis 

For the calculation of axial buckling load Nxcr, the anisotropic cylindrical shell 

analysis code developed by Jaunky25 is used. It is preferred to use this code because of its 

ease of modeling cylindrical shells.  Because of the restrictions in this code, the circular 

cylinder was modeled as a semi-circular shell with symmetric boundary conditions along 

the two unloaded edges.  The loaded edges were treated as clamped in this study. 

Figure 3.1 Circular cylinder and its corresponding computational model used for buckling 
analysis 

y 

x 

z 
y 

x 

z 

Edge 1 

Edge 2 

Edge 3 

Edge 4 

Physical Model 
Computational Model 
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The geometric and material properties of four types of cylinders are given in 

Table 3.1, where L is the cylinder length, D the cylinder diameter, and 11E , 22E , 12v  and 

12G  the material properties. 

In defining the boundary conditions, the cylinder is allowed to undergo end 

shortening along edge 4 with edge 2 kept fixed.  The condition of symmetry requires the 

v  displacement and yφ rotation to be kept zero along the unloaded edges of the model.  

All boundary conditions are specified in Table 3.2. 

 

Table 3.1 Geometric and material properties for cylinder specimens 

Specimen L, in D, in tply, in E11, psi E22, psi 
12ν  

G12, psi 

1 14 15.75 0.005 18.5780e6 1.64e6 0.0265 0.8737e6 

2 14 15.75 0.005 18.6705e6 1.64e6 0.0264 0.8780e6 

3 14 15.75 0.005 19.2588e6 1.64e6 0.0255 0.9057e6 

4 14 15.75 0.005 18.6154e6 1.64e6 0.0264 0.8754e6 

 

Table 3.2  Description of boundary conditions for the computational modela 

Displacement Edge 1 Edge 2 Edge 3 Edge 4 

U 0 1 0 0 

V 1 1 1 1 

W 0 1 0 1 

xφ  0 1 0 1 

yφ  1 1 1 1 

 a 0 ≡  free, 1 ≡  fixed 
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Of the three options available in the shell analysis code, the strain-displacement 

relationship was modeled using Sanders-Koiter shell theory.  The displacement function 

was represented by a Ritz approximation using Legendre polynomial interpolation 

functions.  The buckling load is then found from an eigenvalue analysis. 

For validation purposes, we compared the results of the shell code based on a 12th 

degree Legendre polynomial interpolation function to those found using the finite-

element code STAGS26. Here a mesh size of 51 x 169 quadrilateral elements was used, 

with the greater mesh density in the circumferencial direction.  

Table 3.3 shows the computational predictions for the buckling force for four 

different cylinder specimens all with 16 layers but with different ply patterns.  The 

buckling loads in all cases correspond to the first symmetric buckling mode.  Specimen 2 

with a quasi-isotropic ply pattern is found to be the strongest of the four examined.  The 

errors in buckling load from the shell code are shown inside parenthesis, and they 

indicate that the shell code is based on a somewhat stiffer model of the cylinder.  This 

error could be reduced using a higher-degree polynomial but at a significant increase in  

computational cost.   

 

Table 3.3  Comparison of predicted buckling loads 

  Axial Buckling Force, lb 

Specimen Ply Distribution Shell Code STAGS 

1 [±45/ �� 45]2s 111,349 (7.0%) 104,044 

2 [±45/0/90]2s 185,420 (2.8%) 180,443 

3 [±45/04/ �� 45]s 158,319 (2.4%) 154,655 

4 [±45/904/� 45]s 167,717 (0.3%) 167,175 
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Probabilistic Buckling Analysis 

The buckling load predictions in Table 3.3 assume no variability or randomness in 

any of the contributing parameters.  However, variations in material properties, geometric 

parameters and loading could alter the buckling predictions, and a different picture may 

emerge when each parameter is assumed to be random with a particular mean and scatter 

such as those specified in Table 3.4.  The statistical characteristics of the material in 

Table 3.4 correspond to AS4 12k/3502 (carbon-epoxy) unidirectional tape as specified in 

MIL-HDBK-17-2E27.  The statistics associated with the geometric parameters 

( , ,  L D t and θ ) are assumed in this case and are not based on any experimental 

observations.  The ply pattern considered for the probabilistic buckling analysis is the 

same as that for specimen 4 in Table 3.3. 

 

Table 3.4  Definition of random variables 

Random Variable 

(No.) 

Distribution 

Type 
Mean 

Coefficient of 

Variation (%) 

L, in (1) Normal 14 1 

D, in (2) Normal 15 1 

tply, in (3-18) Normal 0.005 1 

Tply, deg. (19-34) Normal [±45/904/ �� 45]s 1 

E11, psi (35) Normal 1.8e7 3.19 

E22, psi (36) Normal 1.35e6 4.26 

Q12 (37) Normal 0.226 5 

G12, psi (38) Normal 5.43e5 5.16 
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To determine the probabilistic buckling load, a Monte Carlo simulation was 

performed as described in Appendix B.  For each simulation cycle, random values were 

generated for the 38 variables in Table 3.4.  Note that each ply angle and ply thickness is 

treated as a separate random variable. The shell analysis code was used to find the 

buckling load in each cycle.  

 A total of 5,314 random experiments were conducted to determine the 

distribution, mean, and coefficient of variation of the buckling load.  The histogram for 

the buckling load, Pcr, shown in Fig. 3.2, indicates a normal probability distribution with 

a mean of 151,203 lb and a standard deviation of 4,245 lb.  In comparison, the 

deterministic buckling load with all random variables fixed at their corresponding mean 

values (see Table 3.4) is found to be 151,310 lb. 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Histogram for buckling load, Pcr 

135000 138000 141000 144000 147000 150000 153000 156000 159000 162000 165000
P  (lb) 
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The Monte Carlo simulations were performed for two reasons: (1) to measure the 

reliability of the cylinder by calculating the probability of failure directly from the results 

of the Monte Carlo simulation; (2) to estimate cylinder reliability by calculating the 

Hasofer-Lind index for which a regression model of buckling response based on these 

simulation data is used. 

 

Structural Reliability Analysis 

The limit state function for cylinder buckling is formulated as  

 g( X) = Pcr − P  (3.1) 

where P is the applied axial force on the cylinder, Pcr is the corresponding buckling force, 

and X is the vector of random variables.  According to Eq. (3.1), g < 0 means failure, g > 

0 indicates safety, and g = 0 represents the limit state (surface separating the failure and 

safe regions).  In this case, g is a function of 39 random variables, 38 of which are 

defined in Table 3.4 with the 39th variable being the applied load P, which is assumed to 

be normally distributed with an assumed mean of 143,690 lb and COV = 5%.    

The structural reliability is estimated in terms of Hasofer-Lind reliability index 

with the corresponding probability of failure compared with that obtained from a direct 

Monte Carlo simulation.   

 

Hasofer-Lind Reliability Index 

The first-order second moment method developed by Hasofer and Lind28 gives a 

measure of structural reliability in terms of the reliability or safety index β , which is 
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defined as the shortest distance between the origin of the reduced coordinate system and 

the failure surface defined by the limit state (g = 0) as shown in Fig 3.3. 

 

 

Figure 3.3  Hasofer-Lind reliability index: nonlinear performance function 

 

The point on the failure surface corresponding to β  is called the design point or 

the most probable failure point (MPP) with the coordinates defined as 

 xi
' * = −α i

*β, i = 1,2,...,39         (3.2) 

with direction cosines given by 

 α i
* =

∂g
∂ ′ X i

  
   

  
   *

∂g
∂ ′ X i

  
   

  
   *

2

i=1

39

∑
, i =1,2,...,39        (3.3) 

g(X)<

g(X)>

β  

x ∗′   (Design Point) 

g(X)=0 

1X ′  

2X ′  

� 
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where xi
'  corresponds to xi  in reduced coordinate system.  When limit-state function is 

nonlinear, as is the case here, β  is determined through an iterative procedure based on an 

initial estimate for the coordinates of MPP.  This procedure is described in Appendix C. 

The advantage of estimating reliability with the Hasofer-Lind approach is that it 

only depends upon the mean and variance (first and second moment properties) of 

individual random variables and not their distribution type29. The disadvantage is that, for 

non-normal random variables, accuracy is sacrificed.  The probability of failure is 

directly related to β  according to the relation  

 Pf = Φ(−β)             (3.4) 

where Φ  is the cumulative distribution function (CDF) of the standard normal variate. 

In applying the Hasofer-Lind reliability index approach to the problem of cylinder 

reliability, the limit state function defined by Eq. (3.1) must be expressed as 

g( ′ x 1, ′ x 2,..., ′ x 39) with all uncorrelated and independent random variables transformed to 

the reduced coordinate system such that µ ′ X i = 0 and σ ′ X i = 1.  In  Eq. (3.1), the limit 

state function is defined as the difference between the critical buckling load and the 

applied load with the buckling load being an implicit function of the 38 random variables 

(see Table 3.4).    

Since the calculation of β  is an iterative procedure, the buckling analysis code 

may need to be called hundreds of times for β  calculation. Since one run of the buckling 

analysis code takes about 7 minutes using a Sun 350 microcomputer, a β  calculation 

could take more than 24 hours.  Thus for the sake of efficiency, instead of using the shell 

code directly in the calculation of reliability index, an algebraic response surface model 
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of the buckling load was used.  Another advantage of this approach is an efficient 

calculation of sensitivity derivatives of the limit-state function with respect to individual 

random variables.  The Monte Carlo simulation results found previously for the 

probabilistic buckling load were used to generate a second-order response surface model 

for the buckling load.  

The equation for Pcr was generated rapidly using the SAS mathematical software 

based on the least squares technique.  The resulting model is a full quadratic polynomial 

with a mean of 151,203 lb, root MSE of 150.85 and R2 of 0.9989, which means the model 

will be quite good for prediction of crP . 

For the cylinder in Table 3.4 with the specified loading condition, we get 

 β  = 0.91 

which corresponds to a probability of failure  

 ( )βΦ − = 0.181.    

 

Monte Carlo Simulation 

The limit state function is defined as  

 crg P P= −  (3.5) 

We take g<0 as a failure due to buckling.  crP  is the buckling load calculated by the shell 

analysis code. The applied load P  is the specified applied load. 

Using the limit-state function formulation in Eq. (3.1) and the response surface 

model for the buckling load, a direct Monte Carlo simulation was performed.  Specimen 

failure in buckling is detected when the limit state function  g(x) = 0 is violated in an 

experiment.  The probability of failure is then defined as 
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 Pf =
N f

N
        (3.6)  

where N  is total number of simulations and fN  is the number of failures.  The 

coefficient of variation of failure probability found as 

 COV(Pf ) =

(1 − Pf )Pf

N
Pf

        (3.7) 

The same number of simulation cycles were run as before (5314) and 988 

instances were found where g < 0.  This resulted in a probability of failure of 0.186 for 

this specimen based on the assumed distribution, mean and scatter for the applied load, 

which is very close to what was obtained using Hasofer-Lind method.  The plots of Pf 

and COV  are shown in Fig. 3.4 with the final COV = 2.87%.   

 

 

Figure 3.4 Results of Monte Carlo simulation for buckling reliability 
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Sensitivity Analysis 

Deterministic Sensitivities of Limit State Function 

The partial derivative of g with respect to each random variable gives a 

deterministic measure of its sensitivity to that variable.  The relative importance of 

individual random variables is found by calculating the normalized sensitivities using the 

equation  

 γ i =
∂g

∂ ′ X i *
′ x i
* ∂g

∂ ′ X i *
′ x i
*  

  
 

  

  
 

i=1

n

∑          (3.8) 

and then normalizing the values with respect to one having the largest magnitude.  The 

deterministic and normalized sensitivities at MPP for the [±45/904/��� 45]s specimen are 

given in Table 3.5 with the latter values also plotted in Fig. 3.5.  The normalized 

sensitivities indicate that the applied load has the greatest influence on the limit state 

function, followed closely by E11 and cylinder diameter at a distant third.  The effect of 

applied load is evident from the limit-state function formulation; however, the effects of 

E11 and cylinder diameter were not intuitively obvious prior to this analysis.  The effect 

of individual ply thickness is also seen to be more significant than the corresponding 

orientation angle. 
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Figure 3.5 Normalized sensitivities 
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Table 3.5  Deterministic sensitivities of limit state function for specimen 4 

Random 
Variable (∂g / ∂ ′ X i )* iγ  ( iγ )norm. 

E11 6.7325E-03 4.5051E-01 7.9947E-01 

E22 1.3887E-02 7.0404E-02 1.2494E-01 

12ν  5.7268E+03 4.8772E-03 8.6550E-03 

G12 2.0828E-02 4.2489E-02 7.5400E-02 
Ply Thickness 1 3.4174E+06 6.4401E-02 1.1429E-01 
Ply Thickness 2 3.6443E+06 6.8676E-02 1.2187E-01 
Ply Thickness 3 3.3224E+06 6.2610E-02 1.1111E-01 
Ply Thickness 4 3.3929E+06 6.3939E-02 1.1346E-01 
Ply Thickness 5 3.3511E+06 6.3152E-02 1.1207E-01 
Ply Thickness 6 3.2515E+06 6.1274E-02 1.0874E-01 
Ply Thickness 7 3.6541E+06 6.8861E-02 1.2220E-01 
Ply Thickness 8 4.7967E+06 9.0388E-02 1.6040E-01 
Ply Thickness 9 4.6600E+06 8.7811E-02 1.5583E-01 
Ply Thickness 10 3.7226E+06 7.0151E-02 1.2449E-01 
Ply Thickness 11 2.8606E+06 5.3910E-02 9.5667E-02 
Ply Thickness 12 2.7974E+06 5.2719E-02 9.3553E-02 
Ply Thickness 13 2.8313E+06 5.3358E-02 9.4688E-02 
Ply Thickness 14 2.9109E+06 5.4857E-02 9.7348E-02 
Ply Thickness 15 4.3647E+06 8.2248E-02 1.4596E-01 
Ply Thickness 16 4.2379E+06 7.9859E-02 1.4172E-01 

Ply Angle 1 -2.7543E+02 -4.6729E-02 -8.2925E-02 
Ply Angle 2 -2.3055E+02 3.9105E-02 6.9394E-02 
Ply Angle 3 2.0942E+02 7.1034E-02 1.2606E-01 
Ply Angle 4 1.5349E+02 5.2066E-02 9.2394E-02 
Ply Angle 5 1.0548E+02 3.5783E-02 6.3500E-02 
Ply Angle 6 6.5501E+01 2.2222E-02 3.9434E-02 
Ply Angle 7 8.9056E+01 -1.5108E-02 -2.6810E-02 
Ply Angle 8 -3.7164E+02 -6.3055E-02 -1.1190E-01 
Ply Angle 9 -3.6598E+02 -6.2096E-02 -1.1019E-01 
Ply Angle 10 2.0173E+02 -3.4225E-02 -6.0735E-02 
Ply Angle 11 -2.0116E+01 -6.8251E-03 -1.2112E-02 
Ply Angle 12 -2.0665E+01 -7.0114E-03 -1.2442E-02 
Ply Angle 13 -1.1853E+01 -4.0215E-03 -7.1365E-03 
Ply Angle 14 -5.6443E-01 -1.9150E-04 -3.3982E-04 
Ply Angle 15 3.2673E+02 -5.5435E-02 -9.8373E-02 
Ply Angle 16 -3.5971E+02 -6.1032E-02 -1.0831E-01 

Diameter 2.3608E+03 1.3344E-01 2.3680E-01 
Length -1.5325E+03 -8.0898E-02 -1.4356E-01 

Applied Load, P -1.0000E+00 -5.6351E-01 -1.0000E+00 
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Probabilistic Sensitivities of the Reliability Index 

The probabilistic sensitivities of β  with respect to the mean and standard 

deviation of individual random variables are found as 

 *

2
39

1 *

, 1, 2,...,39
i

i

i

X

X
i i

g

X
i

g

X

∂
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        (3.10) 

The probabilistic sensitivities found from Eqs. (3.14) and (3.15) for 

[±45/904/��� 45]s specimen are shown in columns 2 and 4 of Table 3.6.  The corresponding 

normalized probabilistic sensitivities, shown in columns 3 and 5 of Table 3.6, are 

calculated using the ratios  

 
39

1

, 1,2,...,39
i i

i i

i X X
iX X

i
∂β ∂βδ µ µ

∂µ ∂µ=

 
= =   

∑            (3.11) 
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= =   

∑       (3.12) 

and dividing each ratio by the largest value in the group as 

 
max

( ) ;i
i norm

δδ
δ

=   max 1 2 39max(| |, | |, ,| |)δ δ δ δ= �  (3.13) 

 
max

( ) ;i
i norm

ηη
η

=   max 1 2 39max(| |,| |, , | |)η η η η= �  (3.14) 
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Table 3.6. Probabilistic sensitivities of the reliability index for specimen 4 

Random 
Variable (∂β / ∂µXi) (δi) norm (∂β / ∂σ Xi) (ηi)norm 

E11 8.1380E-07 8.4340E-01 -3.5310E-07 2.8950E-01 

E22 1.6790E-06 1.3050E-01 -1.5050E-07 1.2360E-02 

12ν  6.9220E-01 9.0070E-03 -5.0290E-03 8.1130E-05 

G12 2.5170E-06 7.8710E-02 -1.6490E-07 6.5970E-03 
Ply Thickness 1 4.1310E+02 1.1890E-01 -7.9250E+00 5.6570E-04 
Ply Thickness 2 4.4050E+02 1.2680E-01 -9.0090E+00 6.4310E-04 
Ply Thickness 3 4.0160E+02 1.1560E-01 -7.4870E+00 5.3450E-04 
Ply Thickness 4 4.1010E+02 1.1810E-01 -7.8100E+00 5.5760E-04 
Ply Thickness 5 4.0500E+02 1.1660E-01 -7.6200E+00 5.4400E-04 
Ply Thickness 6 3.9300E+02 1.1310E-01 -7.1740E+00 5.1210E-04 
Ply Thickness 7 4.4170E+02 1.2720E-01 -9.0580E+00 6.4660E-04 
Ply Thickness 8 5.7980E+02 1.6690E-01 -1.5610E+01 1.1140E-03 
Ply Thickness 9 5.6320E+02 1.6220E-01 -1.4730E+01 1.0520E-03 
Ply Thickness 10 4.4990E+02 1.2950E-01 -9.4030E+00 6.7130E-04 
Ply Thickness 11 3.4580E+02 9.9540E-02 -5.5510E+00 3.9630E-04 
Ply Thickness 12 3.3810E+02 9.7340E-02 -5.3090E+00 3.7900E-04 
Ply Thickness 13 3.4220E+02 9.8520E-02 -5.4370E+00 3.8820E-04 
Ply Thickness 14 3.5180E+02 1.0130E-01 -5.7470E+00 4.1030E-04 
Ply Thickness 15 5.2760E+02 1.5190E-01 -1.2930E+01 9.2280E-04 
Ply Thickness 16 5.1220E+02 1.4750E-01 -1.2180E+01 8.6980E-04 

Ply Angle 1 -3.3290E-02 -8.6260E-02 -4.6310E-04 2.9760E-04 
Ply Angle 2 -2.7870E-02 7.2200E-02 -3.2460E-04 2.0850E-04 
Ply Angle 3 2.5310E-02 1.3120E-01 -5.3560E-04 6.8820E-04 
Ply Angle 4 1.8550E-02 9.6140E-02 -2.8760E-04 3.6960E-04 
Ply Angle 5 1.2750E-02 6.6070E-02 -1.3590E-04 1.7460E-04 
Ply Angle 6 7.9170E-03 4.1030E-02 -5.2420E-05 6.7360E-05 
Ply Angle 7 1.0760E-02 -2.7890E-02 -4.8450E-05 3.1130E-05 
Ply Angle 8 -4.4920E-02 -1.1640E-01 -8.4340E-04 5.4190E-04 
Ply Angle 9 -4.4240E-02 -1.1460E-01 -8.1790E-04 5.2550E-04 
Ply Angle 10 2.4380E-02 -6.3180E-02 -2.4850E-04 1.5960E-04 
Ply Angle 11 -2.4310E-03 -1.2600E-02 -4.9470E-06 6.3570E-06 
Ply Angle 12 -2.4980E-03 -1.2940E-02 -5.2090E-06 6.6940E-06 
Ply Angle 13 -1.4330E-03 -7.4240E-03 -1.7120E-06 2.2010E-06 
Ply Angle 14 -6.8220E-05 -3.5350E-04 -4.0480E-09 5.2020E-09 
Ply Angle 15 3.9490E-02 -1.0230E-01 -6.5180E-04 4.1880E-04 
Ply Angle 16 -4.3480E-02 -1.1270E-01 -7.9020E-04 5.0770E-04 

Diameter 2.8530E-01 2.4640E-01 -1.1340E-02 2.4290E-03 
Length -1.8520E-01 -1.4930E-01 -4.4620E-03 8.9190E-04 

Applied Load, P -1.2090E-04 -1.0000E+00 -9.7480E-05 1.0000E+00 
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The plot of normalized probabilistic sensitivities with respect to the mean value of 

individual random variables is shown in Fig. 3.6.  These sensitivities reconfirm, to some 

extent, the deterministic sensitivity results in that the mean values of the applied load and 

E11 are found to have a much stronger influence on the reliability index than those of 

other random variables.  The influence of mean cylinder diameter is found to be less 

significant as was also indicated by deterministic sensitivities of the limit state function in 

Fig. 3.5.  Besides these top three random variables (P, E11, and D), the mean ply 

thicknesses are in the second category in terms of influence on β . However, if the effect 

of total as opposed to individual ply thicknesses is examined, a much greater sensitivity 

would be observed. 

 

 

Figure 3.6 Normalized probabilistic sensitivities of β  with respect to the mean value of 
each random variable 
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Figure 3.7 Normalized probabilistic sensitivities of β  with respect to the standard 
deviation of each random variable 
 

The plot of normalized probabilistic sensitivities with respect to the standard 

deviation of each random variable is shown in Fig. 3.7.  The plot indicates that β  is 

significantly more sensitive to uncertainty in P and E11 than the other 37 random 

variables. 

 

Effects of Distribution Type and COV of the Applied Load on β  

Since the results of reliability analysis indicate a large sensitivity to the applied 

load, the effects of the distribution type and coefficient of variation of P on β  were also 

examined.  Two different distribution types (Normal and Lognormal) and three different 
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values for coefficient of variation of P were considered.  In both cases, the applied load 

was assumed to have a mean of 143,690 lb.  The critical buckling load was determined 

from the algebraic response surface model and was not affected by the variance in 

applied load.   

The results shown in Table 3.7 indicate that the coefficient of variation has a 

significant influence on β  whereas the effect of the distribution type is relatively 

insignificant.  It must be noted that in both cases the remaining 38 random variables were 

assumed to have normal distribution.  This fact is important in the case of Monte Carlo 

simulation, but irrelevant in the case of Hasofer-Lind reliability index calculation.  The 

reason the values of β  associated with the two distribution types are not exactly identical 

is because in the lognormal case, the data is not dispersed symmetrically about the mean, 

as it is in the normal case.  

 

Table 3.7 The effects of distribution and coefficient of variation of P 

  Hasofer-Lind Monte Carlo Simulation 

P Distribution COV (%) β  Pf Pf 

1 1.7315 .042 .050 
5 0.9099 .181 .186 

 
Normal 

10 0.5038 .309 .308 
     

1 1.7326 .042 .050 
5 0.9188 .179 .184 

 
Lognormal 

10 0.5421 .295 .295 
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Results of Specimens 1, 2 and 3 

A sensitivity analysis was conducted for specimens 1, 2 and 3.  Their distribution 

types, mean values and coefficients of variations of random variables are specified in 

Table 3.4.  The ply pattern specified, as indicated previously in Table 3.3, are as follows: 

Specimen 1:  [±45/� 45]2s 

Specimen 2:  [±45/0/90]2s 

Specimen 3:  [±45/04/ �� 45]s 

The deterministic sensitivity derivatives are shown in Table 3.8 while those for 

the probabilistic approach are shown in Table 3.9. 
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Table 3.8 Deterministic sensitivities of limit state function for specimen 1, 2 and 3 

( iγ )norm. Random 
Variable 

Specimen 1 Specimen 2 Specimen 3 

E11 5.3177E-01 8.3212E-01 7.3822E-01 

E22 6.5451E-02 6.4709E-02 1.4473E-01 

12ν  1.3888E-02 5.1279E-03 9.3684E-03 

G12 4.8625E-01 7.3314E-02 1.0011E-01 
Ply Thickness 1 1.1169E-01 1.2143E-01 4.2650E-02 
Ply Thickness 2 1.0578E-01 1.5171E-01 4.5929E-02 
Ply Thickness 3 1.1326E-01 1.0317E-01 1.4124E-01 
Ply Thickness 4 1.1694E-01 1.0201E-01 1.4299E-01 
Ply Thickness 5 1.2285E-01 9.1156E-02 1.4104E-01 
Ply Thickness 6 1.2575E-01 9.7654E-02 1.4208E-01 
Ply Thickness 7 1.1672E-01 1.2081E-01 1.3274E-01 
Ply Thickness 8 1.3075E-01 1.3460E-01 1.5041E-01 
Ply Thickness 9 1.2058E-01 1.3509E-01 1.4489E-01 
Ply Thickness 10 1.2552E-01 1.2115E-01 1.3291E-01 
Ply Thickness 11 1.2386E-01 1.0365E-01 9.1386E-02 
Ply Thickness 12 1.1950E-01 1.3077E-01 9.4767E-02 
Ply Thickness 13 1.2939E-01 1.2552E-01 8.8619E-02 
Ply Thickness 14 1.3443E-01 1.1060E-01 9.1501E-02 
Ply Thickness 15 1.2047E-01 1.0515E-01 1.5087E-01 
Ply Thickness 16 1.1183E-01 1.1256E-01 1.4216E-01 

Ply Angle 1 -3.3156E-01 1.1028E-02 4.0752E-02 
Ply Angle 2 -2.6414E-01 -5.8536E-02 -2.4857E-02 
Ply Angle 3 -1.9408E-01 -8.6896E-06 9.8673E-07 
Ply Angle 4 -1.2057E-01 -3.2414E-02 7.0570E-07 
Ply Angle 5 -6.4461E-02 -4.3119E-02 3.2963E-07 
Ply Angle 6 -1.3488E-02 -7.1985E-07 1.6328E-07 
Ply Angle 7 3.4386E-02 2.3961E-04 9.6772E-02 
Ply Angle 8 7.3834E-02 2.0462E-02 1.3748E-01 
Ply Angle 9 1.1022E-01 2.3762E-02 1.4217E-01 
Ply Angle 10 1.3918E-01 6.1652E-03 1.2562E-01 
Ply Angle 11 1.6028E-01 -1.3151E-06 9.9413E-11 
Ply Angle 12 1.7688E-01 -3.9031E-02 1.1514E-09 
Ply Angle 13 1.8826E-01 -2.8110E-02 3.2642E-12 
Ply Angle 14 1.9029E-01 -2.1580E-07 1.3610E-09 
Ply Angle 15 1.9032E-01 1.8791E-03 1.0796E-01 
Ply Angle 16 1.8347E-01 4.5697E-04 8.9776E-02 

Diameter -1.8647E-01 3.7199E-02 -6.0124E-02 
Length 3.9204E-01 7.5305E-02 1.6076E-01 

Applied Load, P -1.0000E+00 -1.0000E+00 -1.0000E+00 
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Table 3.9 Probabilistic sensitivities of the reliability index for specimen 1,2 and 3 

(δi) norm (ηi)norm Random 
Variable 

Specimen 1 Specimen 2 Specimen 3 Specimen 1 Specimen 2 Specimen 3 

E11 3.26E-01 9.8520E-01 7.0538E-01 4.3327E-02 3.9508E-01 2.0253E-01 
E22 4.16E-02 7.3266E-02 1.3919E-01 1.2570E-03 3.8966E-03 1.4063E-02 

12ν  8.90E-03 5.7717E-03 9.0385E-03 7.9153E-05 3.3313E-05 8.1700E-05 
G12 2.82E-01 8.3382E-02 9.6267E-02 8.4806E-02 7.4046E-03 9.8701E-03 

Ply Thickness 1 7.17E-02 1.3667E-01 4.1158E-02 2.0568E-04 7.4716E-04 6.7747E-05 
Ply Thickness 2 6.79E-02 1.7078E-01 4.4323E-02 1.8447E-04 1.1666E-03 7.8631E-05 
Ply Thickness 3 7.27E-02 1.1611E-01 1.3629E-01 2.1149E-04 5.3923E-04 7.4279E-04 
Ply Thickness 4 7.51E-02 1.1480E-01 1.3797E-01 2.2542E-04 5.2713E-04 7.6155E-04 
Ply Thickness 5 7.89E-02 1.0258E-01 1.3609E-01 2.4873E-04 4.2086E-04 7.4101E-04 
Ply Thickness 6 8.07E-02 1.0990E-01 1.3709E-01 2.6063E-04 4.8305E-04 7.5193E-04 
Ply Thickness 7 7.49E-02 1.3597E-01 1.2808E-01 2.2460E-04 7.3946E-04 6.5603E-04 
Ply Thickness 8 8.39E-02 1.5150E-01 1.4513E-01 2.8171E-04 9.1806E-04 8.4246E-04 
Ply Thickness 9 7.74E-02 1.5205E-01 1.3980E-01 2.3965E-04 9.2480E-04 7.8171E-04 

Ply Thickness 10 8.06E-02 1.3635E-01 1.2825E-01 2.5969E-04 7.4368E-04 6.5793E-04 
Ply Thickness 11 7.95E-02 1.1664E-01 8.8185E-02 2.5285E-04 5.4423E-04 3.1101E-04 
Ply Thickness 12 7.67E-02 1.4719E-01 9.1447E-02 2.3540E-04 8.6655E-04 3.3447E-04 
Ply Thickness 13 8.31E-02 1.4128E-01 8.5515E-02 2.7594E-04 7.9841E-04 2.9247E-04 
Ply Thickness 14 8.63E-02 1.2447E-01 8.8296E-02 2.9780E-04 6.1972E-04 3.1187E-04 
Ply Thickness 15 7.73E-02 1.1834E-01 1.4557E-01 2.3924E-04 5.6017E-04 8.4777E-04 
Ply Thickness 16 7.18E-02 1.2668E-01 1.3717E-01 2.0617E-04 6.4196E-04 7.5274E-04 

Ply Angle 1 -2.14E-01 1.2404E-02 3.9328E-02 1.8272E-03 6.1541E-06 6.1882E-05 
Ply Angle 2 -1.70E-01 -6.5816E-02 -2.3990E-02 1.1582E-03 1.7328E-04 2.3010E-05 
Ply Angle 3 -1.25E-01 0.0000E+00 0.0000E+00 6.2449E-04 7.8354E-05 2.7278E-05 
Ply Angle 4 -7.76E-02 -3.6450E-02 0.0000E+00 2.4066E-04 5.3136E-05 1.9509E-05 
Ply Angle 5 -4.15E-02 -4.8486E-02 0.0000E+00 6.8722E-05 9.4044E-05 9.1126E-06 
Ply Angle 6 -8.67E-03 0.0000E+00 0.0000E+00 3.0066E-06 6.4909E-06 4.5138E-06 
Ply Angle 7 2.21E-02 2.6949E-04 9.3382E-02 1.9520E-05 2.9304E-09 3.4875E-04 
Ply Angle 8 4.74E-02 2.3017E-02 1.3265E-01 8.9930E-05 2.1195E-05 7.0383E-04 
Ply Angle 9 7.08E-02 2.6730E-02 1.3718E-01 2.0029E-04 2.8575E-05 7.5282E-04 

Ply Angle 10 8.93E-02 6.9345E-03 1.2122E-01 3.1917E-04 1.9228E-06 5.8780E-04 
Ply Angle 11 1.03E-01 0.0000E+00 0.0000E+00 4.2311E-04 1.1859E-05 2.7482E-09 
Ply Angle 12 1.13E-01 -4.3890E-02 0.0000E+00 5.1521E-04 7.7046E-05 3.1829E-08 
Ply Angle 13 1.21E-01 -3.1611E-02 0.0000E+00 5.8347E-04 3.9980E-05 9.0238E-11 
Ply Angle 14 1.22E-01 0.0000E+00 0.0000E+00 5.9612E-04 1.9459E-06 3.7623E-08 
Ply Angle 15 1.22E-01 2.1135E-03 1.0418E-01 5.9626E-04 1.7811E-07 4.3409E-04 
Ply Angle 16 1.18E-01 5.1397E-04 8.6632E-02 5.5422E-04 1.0479E-08 3.0019E-04 

Diameter -1.20E-01 4.1848E-02 -5.8030E-02 5.7638E-04 7.0049E-05 1.3475E-04 
Length 2.51E-01 8.4734E-02 1.5511E-01 2.5209E-03 2.8718E-04 9.6247E-04 

Applied Load, P -1.00E+00 -1.0000E+00 -1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 
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Figure 3.8 Deterministic sensitivities ( )i normγ of specimen 1, 2 and 3 
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Figure 3.9 Normalized probabilistic sensitivities of β  with respect to the mean value of 
each random variable for specimen 1, 2 and 3 
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Figure 3.10 Normalized probabilistic sensitivities of β  with respect to the standard 
deviation of each random variable for specimen 1, 2 and 3 
  

 For the deterministic sensitivities, P and 11E  have the biggest influence in all 3 

specimens.  12G  also has a relatively big influence in specimen 1. For the probabilistic 

sensitivities of β  with respect to the mean values of each variable, the applied load and 

11E  still have the biggest influence in all 3 specimens.  For normalized probabilistic 

sensitivities of β  with respect to the standard deviation of each random variable,  the 

applied load and 11E  have stronger influence than other variables in specimens 2 and 3, 

while the applied load and 12G  have the strongest influence in specimen 1.  With some 

exceptions, the reliability of these specimens, as judged by the normalized sensitivity 

derivatives, is still most sensitive to the applied load P and Young's Modulus 11E .  
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Chapter IV 

RELIABILITY-BASED OPTIMIZATION OF COMPOSITE 

CYLINDRICAL SHELLS UNDER AXIAL COMPRESSION 

 

Introduction 

This chapter discusses the reliability-based optimization of laminated circular 

cylinders under axial compression.  Structural reliability is measured in terms of Hasofer-

Lind reliability index, as discussed in Chapter 3. 

The optimization analysis is based on the response surface approximation of axial 

buckling force, crP� .  In generating the response surface model, two different techniques 

are considered.  In the first technique, a Monte Carlo simulation is conducted to find a 

nonlinear model that provides a fairly accurate estimate of buckling load at any design 

point over a wide range of values for individual random variables (including the design 

variables). This approach requires a relatively large number of Monte Carlo simulations 

in order to accurately capture the effect of variation in each variable on the buckling load.  

This is referred to as the global response surface technique. 

In the second technique, a locally accurate response surface model is constructed 

based on the 1n +  point integration technique where n  is the number of random variables 

being considered. This technique is used to generate a new response surface model for 

each design search iteration cycle focused on a small subregion of design space. 
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Global Response Surface Technique 

A single global response surface model for axial buckling force is generated as a 

function of all material and geometric random variables. The term global implies validity 

over the entire design domain confined by bounds imposed on individual random 

variables.  For a 16-ply symmetric laminate, there are 22 random variables to be included 

in the response surface equation.  The list of these random variables in shown in Table 

4.1. 

Because of the nonlinear relationship between the buckling load and most of the 

random variables and the need for the model to be accurate over the entire design 

domain, a fully quadratic response surface model needs to be generated.  A full  quadratic 

equation with all higher order terms present result in 276 unknown coefficients.  In its 

generic form, this equation can be written as 

 
22 22 21 22

2
0

1 1 1 1
cr i i i i i i j

i i i j i

P a b X c X d X X
= = = = +

= + + +∑ ∑ ∑ ∑�  (4.1) 

To obtain an accurate (i.e., very good) estimate of the unknown coefficients, 

3,000 Monte Carlo simulation cycles were conducted. Each random variable in this 

simulation was assumed to have a uniform distribution with the lower and upper bounds 

calculated  according to the relations 

 
(1 )

(1 )

i

i

l
i X

u
i X

X

X

ς µ

ς µ

= −

= +
 (4.2) 

The values of mean and incremental change in each random variable is shown in 

Table 4.1. 
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Table 4.1 Mean values and bound increments used in Monte Carlo simulation 

Random 
Variable iXµ  (%)ς  

11E , psi 1.8E7 4 

22E , psi 1.35E6 5 

22ν  .226 6 

12G , psi 5.43E6 7 
tply, in .005 50 

1θ , deg. 45 26 

2θ , deg. -45 26 

3θ , deg. 90 26 

4θ , deg. 90 26 

5θ , deg. 90 26 

6θ , deg. 90 26 

7θ , deg. -45 26 

8θ , deg. 45 26 

Diameter, in 15 50 
Length, in 14 50 

 

For each random variable, we can obtain the uniformly distributed iX  by 

 ( )l u l
i i i iX X X X r= + −  (4.3) 

where r  is a uniformly distributed number with 0 1r≤ < . 

We used the response surface analysis procedure in SAS software for calculating 

the unknown coefficients in the response surface equation. 

Before using the response surface equation in the optimization analysis, it was 

checked for accuracy.  The mean buckling load is found to be 144,218 lb with a 

coefficient of determination R2= 0.9774, coefficient of variation of 3.04%, and a root 

mean square error (RMSE) of 4,383.26. Because of the range of values of each random 

variable in the Monte Carlo simulation,  we are able to generate and use a single response 

surface model which is valid for all three combinations of cylinder length and diameter. 
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In spite of high R2 and small RMSE, the buckling force predictions from the 

response surface model were compared with those found directly from the shell analysis 

code. The maximum difference in the buckling loads was found to be approximately 3%, 

which is almost equal to the COV of the response surface equation. 

 

Weight Minimization 

The weight minimization problem is formulated as 

Min.   ( )iW X ,  i =1,2,...,22 

s.t.  

   minβ β>  

   
j j j

l u
X X Xµ µ µ< < ,  j =1,2,..., NDV 

where (
1 2
, , ,

NDVX X Xµ µ µ� ) represent the mean values of a subset of random variables 

treated as design variables. Since the cylinder is made of a constant density material and 

the specific weight was not treated as a random variable in our analysis, we decided to 

use the material volume as a surrogate for weight. 

In optimizing the cylinder, the mean thickness of individual plies were considered 

as the design variables with the corresponding standard deviations fixed. The shell 

laminate is assumed to be symmetric, which  requires only the thickness of plies on one 

side of the plane of symmetry to be treated as design variables. The material properties 

and ply orientation angles were treated as random variables with specific means and 

standard deviations.  The cylinder length and diameter were allowed to have three 

specific mean values.  
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To perform the design optimization studies, the reliability analysis code was 

coupled with the DOT30 optimization program where the response surface model was 

used to obtain the buckling response. The optimization solutions are based on the method 

of sequential quadratic programming. The lower and upper bounds on ply thickness are 

chosen to be 0.0026 in. and 0.007 in. , respectively.  

We examined three different values for minβ  (i.e., 3.09, 3.72, and 4.26).  The β  

values and their corresponding reliability are shown in Table 4.2.  The optimization 

results are shown in Table 4.3.  The values of the mean axial and mean buckling loads are 

also shown in Table 4.3. 

 

Table 4.2  β  values and corresponding reliabilities 

β  Reliability 

3.09 0.999 

3.72 0.9999 

4.26 0.99999 
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Table 4.3 Optimization results for weight minimization 

 Mean Values 

Design Exp. Parametera 
min 3.09β =  min 3.72β =  min 4.26β =  

P, lb 143690 143690 143690 

Pcr
� , lb 162631.018 166741.485 169817.556 

V, in3 51.858 52.585 53.213 

t1, in (45) 0.0066929 0.0069999 0.0067245 

t2, in (-45) 0.0070000 0.0070000 0.0070000 

t3, in (90) 0.0069976 0.0062224 0.0067173 

t4, in (90) 0.0050790 0.0056137 0.0062750 

t5, in (90) 0.0026000 0.0026000 0.0026004 

t6, in (90) 0.0070000 0.0070000 0.0070000 

t7, in (-45) 0.0026000 0.0026000 0.0026000 

t8, in (45) 0.0031286 0.0036362 0.0032509 

D, in 20.0 20.0 20.0 

1 

L, in 10.0 10.0 10.0 

P, lb 143690 143690 143690 

Pcr
� , lb 161796.307 165441.246 168760.053 

V, in3 58.448 59.251 59.940 

t1, in (45) 0.0050275 0.0049061 0.0048684 

t2, in (-45) 0.0055967 0.0055715 0.0056314 
t3, in (90)  0.0031384 0.0030434 0.0031605 
t4, in (90) 0.0049807 0.0052309 0.0055585 

t5, in (90) 0.0026000 0.0026000 0.0026000 

t6, in (90) 0.0064662 0.0070000 0.0070000 

t7, in (-45) 0.0070000 0.0070000 0.0070000 

t8, in (45) 0.0063088 0.0063282 0.0063427 

D, in 15.0 15.0 15.0 

2 

L, in 15.0 15.0 15.0 

P, lb 143690 143690 143690 

Pcr
� , lb 162085.471 165976.979 169573.945 

V, in3 54.572 55.335 56.035 

t1, in (45) 0.0056549 0.0056584 0.0058299 

t2, in (-45) 0.0049778 0.0050325 0.0047818 

t3, in (90) 0.0029505 0.0030163 0.0032725 

t4, in (90) 0.0059979 0.0063456 0.0069087 

t5, in (90) 0.0026000 0.0026000 0.0026000 

t6, in (90) 0.0068751 0.0070000 0.0068083 

t7, in (-45) 0.0070000 0.0070000 0.0070000 

t8, in (45) 0.0070000 0.0070000 0.0069994 

D, in 10.0 10.0 10.0 

3 

L, in 20.0 20.0 20.0 
a Ply angles shown in parentheses 
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In design experiments 2 and 3, the thickness of middle plies (layers 6, 7 and 8) are 

near the upper bound, while the 5th layer arrived close to the lower bounds.  In design 

experiment 1, layers 1, 2 and 6 are near the upper bound, while layers 5 and 7 are close to 

the lower bound. It is observed that a substantial increase in reliability can be obtained 

with a minimal increase in wall thickness and material volume. 

The variations in the optimum mean buckling load and cylinder volume are 

shown in Fig. 4.1. For all level of reliability index, the cylinder in design experiment 3 is 

seen to be stronger than those in the other two design experiments. Comparing the 

optimal design for design experiment 1 with that of 2, we see that even though the 

cylinder in design experiment 1 is lighter than that in 2, it has a slightly higher buckling 

load. The variations in length and diameter indicate that the shorter cylinder with larger 

diameter to be stronger than the longer cylinder with smaller diameter. 
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1 3.09;β =    2 3.72;β =    3 4.26β =  

Figure 4.1 Variation of mean buckling load (a) and material volume (b) as a function of 
reliability index 
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Reliability Maximization 

The reliability maximization problem is formulated as 

Max.   ( )iXβ ,  i =1,2,...,22 

s.t.  

   maxV V≤  

   
j j j

l u
X X Xµ µ µ< < ,  j =1,2,..., NDV 

where V is the material volume of the cylinder. The results of this optimization are shown 

in Table 4.4. In each design experiment, the cylinder reliability is maximized based on 

two different limits on volume. This is done to examine the effect of volume constraint 

on reliability index. 

From the results we see a several-cubic inch increase in volume  results in a 

considerable increase in reliability index. The sensitivity of reliability index to volume is 

clearly evident in these results.  It is interesting to note that in this optimization case 

design experiment 4 results in a lighter and stronger cylinder than the other two.  By 

allowing the volume in design experiment 4 to increase to 52.5 in3, the cylinder has a 

buckling load of 166,849 lb whereas design experiment 5 with a volume constraint of 

58.5 in3 resulted in a buckling load of 162,834 lb, and experiment 6 with a volume 

constraint of 58.5 in3 resulted in a buckling load of only 162,077 lb.   
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Table 4.4  Optimization results for reliability maximization 

Mean Values Design 
Exp 

Parameter 
Low High 

β  3.803 6.326 

P, lb 143690 143690 

Pcr
� , lb 166848.990 184339.019 

Vmax, in
3 52.5 55.5 

t1, in (45) 0.0066983 0.0069649 

t2, in (-45) 0.0070000 0.0070000 

t3, in (90) 0.0060949 0.0070000 

t4, in (90) 0.0062424 0.0070000 

t5, in (90) 0.0026000 0.0026000 

t6, in (90) 0.0070000 0.0070000 

t7, in (-45) 0.0026000 0.0028334 

t8, in (45) 0.0035065 0.0037972 

D, in 20.0 20.0 

4 

L, in 10.0 10.0 

β  3.280 6.864 

P, lb 143690 143690 

Pcr
� , lb 162834.180 185807.662 

Vmax, in
3 58.5 63.0 

t1, in (45) 0.0051650 0.0046351 

t2, in (-45) 0.0054642 0.0062041 

t3, in (90) 0.0029478 0.0038056 

t4, in (90) 0.0052679 0.0069806 

t5, in (90) 0.0026067 0.0026000 
t6, in (90) 0.0066962 0.0069998 
t7, in (-45) 0.0069944 0.0070000 

t8, in (45) 0.0061512 0.0063579 

D, in 15.0 15.0 

5 

L, in 15.0 15.0 

β  3.103 6.578 

P, lb 143690 143690 

Pcr
� , lb 162077.777 185119.581 

Vmax, in
3 54.5 59.0 

t1, in (45) 0.0054847 0.0049459 

t2, in (-45) 0.0049751 0.0050188 

t3, in (90) 0.0030721 0.0061180 

t4, in (90) 0.0059383 0.0069813 

t5, in (90) 0.0026000 0.0026113 

t6, in (90) 0.0070000 0.0069713 

t7, in (-45) 0.0070000 0.0069995 

t8, in (45) 0.0070000 0.0070000 
D, in 10.0 10.0 

6 

L, in 20.0 20.0 
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Local Response Surface Technique 

In the previous section, the application of a single global response surface 

equation for buckling load estimation in both reliability analysis and design optimization 

was described. Although that technique resulted in a substantial computational savings 

over the use of exact analysis at every iteration, it still required 3000 Monte Carlo 

simulation cycles for development of an accurate response surface model. The technique 

explored in this section seeks to reduce that computational burden even further with 

minimal loss of accuracy in the optimization results. 

The procedure works as follows. Instead of using a single nonlinear global 

response model that is valid over the entire design space, a series of  linear response 

surface models was used with each being accurate over a localized region of the design 

space.  During each optimization cycle, the search for a better design is limited to the 

region where the local response surface model is valid.  At the completion of each 

optimization cycle, a new response model is generated for use in the next optimization 

cycle.  The procedure is repeated until the objective function converges.  Figure 4.2 

illustrates the search technique over a simple two-dimensional space.  The arrow in each 

block indicates the initial and final points within each local optimization. 

 The computational efficiency of this technique is due to its requirement for much 

fewer Monte Carlo simulation cycles.  The local response models are generated based on 

the 1n +  point integration simulations, where n  is the number of random variables 

present in the response surface model.  Since we are using response observations for only 

1n +  experiments, we can only generate a linear response surface model.  This limitation 

should not pose a problem as each model is used over a small sub-region of the design 



www.manaraa.com

 

 

53 

space.  The selection of random value for each variable is based on the procedure 

described in Appendix C.  

 

Figure 4.2 Illustration of optimization based on multiple local regression models 

 

The optimization scheme based on the sequential application of local response 

models is described by the flowchart in Fig. 4.3. 
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Figure 4.3 Flow chart of optimization based on multiple local regression models 

 

The optimization results based on this technique are listed in Table 4.5 and Figure 

4.4. 
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Table 4.5 Multiple local optimization results for weight minimization with reliability 

constraint of min 3.09β =  

Global RS technique Local RS technique 
Case 

Initial Final 
CPU 

time (hr) 
Initial Final 

CPU 
time 

Difference 
in answer 

(%) 

Difference 
in CPU 

time (hr) 

1 56.85 55.04 350 56.85 56.62 16 2.8 334 

2 56.85 59.74 350 56.85 58.83 16 1.54 334 

3 56.85 55.80 350 34.03 55.41 19 0.7 331 

4 56.85 55.80 350 83.20 55.08 19 1.3 331 

5 56.85 58.45 350 34.03 57.73 21 1.2 329 

6 56.85 58.45 350 83.20 57.60 19 1.5 331 

Case 1: All COV=1% except COVP = 3.04% 

Case 2: 
11

3.19%ECOV = , 
22

4.26%ECOV = , 5%COVν = , 
12

5.16%GCOV = , 

3.04PCOV = , 5%tCOV =  and all other COV = 1% 

Case 3, 4:  All COV=1% 

Case 5, 6: 
11

3.19%ECOV = , 
22

4.26%ECOV = , 5%COVν = , 
12

5.16%GCOV = , 

3.04PCOV =   and all other COV = 1% 
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Figure 4.4 Optimization Convergence History 

30

35

40

45

50

55

60

65

70

75

80

1 2 3 4 5 6 7 8

Case 3

Case 5

Case 4

Case 6

55

55.5

56

56.5

57

57.5

58

58.5

59

59.5

60

1 2 3 4 5 6

Case 1

Case 2

Design cycle 

(a) 

Design cycle 
(b) 



www.manaraa.com

 

 

57 

The optimization generated from global response model optimization technique 

and multiple local response models technique have little difference, while the latter takes 

much less time.  Thus apparently the multiple local response models technique is more 

efficient than the global model technique.  

The plots also show the effect of the coefficient of variation on the optimization 

results.  When the random variables have larger coefficients of variations, which increase 

the probability of structure failure, the ply thicknesses tend to increase in order to 

maintain the minimum reliability constraint, thus resulting the increase in shell volume.  

This trend can be seen in Figure 4.3, in which Case 2, Case 5 and Case 6 have larger 

COV's than Case 1, Case 3 and Case 4, respectively. 

The optimization was started with the initial values of the design variables being 

at the lower bounds in Case 3 and Case 5, and at the upper bounds in Case 4 and Case 6.  

Figure 4.3(b) shows that the same objective function values are reached no matter where 

the optimization was begun. 
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Chapter V 

SUMMARY AND CONCLUSIONS 

 

Reliability Analysis of Anisotropic Circular Cylinders 

The reliability of anisotropic circular cylinders with axial buckling as the mode of 

failure was investigated.  A large number of Monte Carlo simulations cycles were 

performed and the RSREG procedure of statistics software SAS was used to construct the 

full quadratic response surface model for estimation of axial buckling force.  The 

response surface equation was used for calculation of component reliability measured in 

terms of Hasofer-Lind reliability index.  The probability of failure was also calculated 

using the Monte Carlo simulation method, which is shown to be very close to that from 

the Hasofer-Lind reliability index. 

The response surface model was also used to investigate sensitivity.  The 

deterministic sensitivity derivatives of the limit state function, defining the surface 

separating the safe from the failure region, with respect to material properties, geometric 

parameters, and applied load were studied.  For the four anisotropic cylinders, ply pattern, 

applied load, Young's modulus 11E , and cylinder diameter, were found to have the 

greatest influence on the limit state function.  The probabilistic sensitivities of the 

reliability index β  with respect to the mean and standard deviation of material 
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properties, geometric parameters, and applied load were calculated.  These results also 

indicate Young's modulus 11E  and diameter have the greatest influence on reliability 

index β .  For the cylinder made only of 45±  plies, 12G  is also seen to have a 

large influence on β .  Although the influence of each ply thickness was found to be 

small, the effect of total thickness on buckling load is large, as expected. 

As for the influence of distribution type and coefficient of variation of applied 

load on reliability index β , it was found that the distribution type has little effect on β  

while the influence of coefficient of variation is more significant.  The probability of 

failure increases as the coefficient of variation is increased. 

 

Reliability-Based Optimization of Anisotropic Circular Cylinders 

  

Two design optimization cases were investigated.  In the first case, the cylinder 

weight is minimized subject to a reliability constraint; in the second case, the cylinder 

reliability is maximized subject to a weight/volume constraint.   In both cases three 

different combinations of cylinder diameter and length were examined.  The mean 

thickness of each ply in one side of a symmetric laminate was treated as a design variable 

for  a total of eight variables.  For the weight minimization problem, three different limits 

for reliability index were considered.  Results showed that for  cylinders with different 

diameters and lengths, the optimum thickness of each layer varies.  It was observed that a 

small increase in wall thickness and material volume could result in a substantial increase 

in reliability index.  For the reliability maximization problem, two different limits on 
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maximum material volume were examined.  The results also showed that a small increase 

in material volume could lead to a big increase in reliability. 

The optimization technique based on a single global nonlinear response surface 

model of axial buckling force was compared with one based on sequential application of 

local response surface models.  Development of a globally accurate model required the 

use of a full quadratic equation, which required 3000 Monte Carlo simulation cycles for 

accurate estimation of its unknown coefficients.  In contrast, each linear response model 

in the local response surface technique required 23 Monte Carlo simulation cycles for a 

total of approximately 160 simulations.  The weight minimization problem was repeated.  

The results from global and local response surface techniques were found to be very close 

while the latter technique took a fraction of time required by the global approach. 
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APPENDIX A 
 
 
 

MONTE CARLO SIMULATION 
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Monte Carlo (MC) methods are stochastic techniques--meaning they are based on 

the use of random numbers and probability statistics to investigate problems. MC 

methods have been used widely from economics to nuclear physics to regulating the flow 

of traffic. Generally speaking, to call something a "Monte Carlo" experiment, all you 

need to do is use random numbers to examine some problem.  

The procedure for finding the random values for each experiment is described as 

follows. 

An equation to generate random numbers with a normal distribution can be found 

in the "Reliability Engineering Handbook31" 

 
1 1 2

2 1 2

[ 2 ln cos(2 )]

[ 2 ln sin(2 )]

x r r

x r r

π σ µ

π σ µ

= − +

= − +
 (A.1) 

Given two uniform random numbers 1 2,r r ( 1 20 , 1r r≤ < ), two normally distributed 

random numbers with a mean µ  and a standard deviation σ  will be generated using the 

above equation.  The uniform random numbers 1r  and 2r  could be achieved from a 

Fortran library routine "r = RAN(I)", where I is an integer as an input and r is a real 

number as the output. 

For example, to get a series of random ply angles with mean µ  and standard 

deviation σ , we choose a pair of uniform random numbers, by applying the above 

equation we get two ply angles which can be used for two simulations.  Then we choose 

another pair of 1r  and 2r , calculate two ply angles and use them for another two 

simulations.  Use the same method to generate the other ply angles, ply thickness, 

geometry parameters and material properties.  
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APPENDIX B 

 

CALCULATION OF HASOFER-LIND RELIABILITY INDEX 
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The procedure for calculation of reliability index β  is described below. 

1. Assume an initial value for the design point.  It is common to start with the mean 

values of the basic random variables.  The design point in the reduced coordinates 

should then be computed using 

  i

i

i X
i

X

X
X

µ
σ

∗ −
′ =   for i = 1,2, …, n (B.1) 

2. Evaluate the directional cosines at the failure point.  The partial derivatives that are 

needed for computing the directional cosines can be obtained as 

 
i

i
X

i i i i

Xg g g

X X X X
σ

∗ ∗ ∗

     ∂∂ ∂ ∂= =     ′ ′∂ ∂ ∂ ∂     
  for i=1,2, …, n (B.2) 

3. Solve the following equation for the root β : 

 ( ) ( ) ( )1 1 2 21 2, , , 0
n nX X X X X n Xg µ α σ β µ α σ β µ α σ β∗ ∗ ∗ − − − = �  (B.3) 

4. Using the β  obtained from step 3, evaluate a new design point using the following 

equation: 

 
i ii X i XX µ α σ β∗ ∗= −  (B.4) 

5. Repeat steps 1 to 4 until convergence of β  is obtained. 

The flowchart of this procedure is shown in Fig. B.1. 
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Figure B.1 Flowchart of calculation of safety index β

Guess the coordinates of MPP 
(x1

*, x2
*,...xn

*) = (µX1
,µX2 ,..., µXn

)  

Transform x* into reduced coordinates 

′ x i
* =

xi
* − µXi

σ X
; i = 1,2,...,n  

β − βold ≤  TOL ?  

STOP 

Yes 

No 

Calculate the coordinate direction angles 

α i
* =

∂g

∂ ′ X i

  
   

  
   *

∂g

∂ ′ X i

  
   

  
   *

2

i=1

n

∑
, i =1,2,...,n  

where 
 

∂g

∂ ′ X i

  
   

  
   *

=
∂g

∂Xi

  
   

  
   *

σ Xi
 

Solve for β by finding the roots of the limit state function equation 
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APPENDIX C 

 

N+1 POINT INTEGRATION SIMULATION 
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The 1n +  point integration method is described as follows.  All normal random 

variables are transformed from the standard normal space to general variable space.  For 

each simulation, the n general random variables are defined according to the equation 

 ,i ii X i j Xx Zµ σ= +    i,j = 1, 2, …, n (C.1) 

where the point values to be used for random variables in the first simulation are 

 1, 1,1 1,2 1,( , , , ) ( ,0,0, ,0)j nZ z z z n= =� �  (C.2)  

which means that in the first simulation all random variables are at their mean values 

except the first random variable which is set to  

 
1 11 X Xx nµ σ= +  (C.3) 

 In subsequent simulations, the point values are determined as follows 

 2,

1 ( 1)( 1)
, ,0,0, ,0j

n n
Z

n n

 + −= −   
�  (C.4) 

 3,

1 ( 1) ( 1)( 2)
, , ,0,0, ,0

( 1) ( 1)j

n n n
Z

n n n n

 + + −= − −  − − 
�  (C.5) 

 4,

1 ( 1) ( 1) ( 1)( 3)
, , , 0,0, ,0

( 1) ( 1)( 2) ( 2)j

n n n n
Z

n n n n n n

 + + + −= − − −  − − − − 
�  (C.6) 

 ,

1 ( 1) ( 1) ( 1) ( 1)
, , , , ,0,0, ,

( 1) ( 1)( 2) ( 2)( 3) 2n j

n n n n
Z

n n n n n n n

 + + + += − − −  − − − − − 
� �  (C.7) 

 1,

1 ( 1) ( 1) ( 1) ( 1)
, , , , ,0,0, ,

( 1) ( 1)( 2) ( 2)( 3) 2n j

n n n n
Z

n n n n n n n+

 + + + += − − − −  − − − − − 
� � (C.8) 
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